Skip to Content
Merck
  • Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration and angiogenesis.

Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration and angiogenesis.

Oncotarget (2014-05-09)
Isabel Heidegger, Johann Kern, Philipp Ofer, Helmut Klocker, Petra Massoner
ABSTRACT

We scrutinized the effect of insulin receptor (INSR) in addition to IGF1R in PCa using in vitro and in vivo models. In-vitro overexpression of IGF1R and INSRA, but not INSRB increased cell proliferation, colony formation, migration, invasion and resistance to apoptosis in prostate cancer cells (DU145, LNCaP, PC3). Opposite effects were induced by downregulation of IGF1R and total INSR, but not INSRB. In contrast to tumor cells, non-cancerous epithelial cells of the prostate (EP156T, RWPE-1) were inhibited on overexpression and stimulated by knockdown of receptors. In-vivo analyses using the chicken allantoic membrane assay confirmed the tumorigenic effects of IGF1R and INSR. Apart of promoting tumor growth, IGF1R and INSR overexpression also enhanced angiogenesis indicated by higher vessel density and increased number of desmin-immunoreactive pericytes. Our study underscores the oncogenic impact of IGF1R including significant effects on tumor growth, cell migration, sensitivity to apoptotic/chemotherapeutic agents and angiogenesis, and characterizes the INSR, in particular the isoform INSRA, as additional cancer-promoting receptor in prostate cancer. Both, the insulin-like growth factor receptor 1 and the insulin receptor exert oncogenic functions, thus proposing that both receptors need to be considered in therapeutic settings.

MATERIALS
Product Number
Brand
Product Description

Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
MISSION® esiRNA, targeting human INSR
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Insr
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Sodium hydroxide, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥98%, pellets
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium hydroxide, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Sodium hydroxide, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, powder
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Sodium hydroxide solution, 5.0 M
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%