Skip to Content
Merck
  • Dechlorination of 1,2,3- and 1,2,4-trichlorobenzene by the white-rot fungus Trametes versicolor.

Dechlorination of 1,2,3- and 1,2,4-trichlorobenzene by the white-rot fungus Trametes versicolor.

Journal of hazardous materials (2009-01-31)
Ernest Marco-Urrea, Miriam Pérez-Trujillo, Gloria Caminal, Teresa Vicent
ABSTRACT

The degradation of 1,2,3-, 1,3,5- and 1,2,4-trichlorobenzene (TCB) by the white-rot fungus Trametes versicolor was studied. Time course experiments showed a degradation rate of 2.27 and 2.49 nmol d(-1)mg(-1) dry weight of biomass during the first 4d of incubation in cultures spiked with 6 mg L(-1) of 1,2,3- and 1,2,4-TCB, respectively. A high percent of degradation of 91.1% (1,2,3-TCB) and 79.6 (1,2,4-TCB) was obtained after 7d. However, T. versicolor was not able to degrade 1,3,5-TCB under the conditions tested. For a range of concentrations of 1,2,4-TCB between 6.5 and 23 mg L(-1), a complete dechlorination of the molecule was observed. Cytochrome P450 monooxygenase appears to be involve in the first step of 1,2,4-TCB degradation, as evidenced by marked inhibition of both dechlorination and degradation of 1,2,4-TCB in the presence of the known cyt P450 inhibitors 1-aminobenzotriazole and piperonyl butoxide. Four intermediates formed from 1,2,4-TCB degradation were detected the second day of incubation, which did not appear the seventh day: 2,3,5-trichloromuconate, its corresponding carboxymethylenebutenolide, 2- or 5-chloro-4-oxo-2-hexendioic acid and 2- or 5-chloro-5-hydroxy-4-oxo-2-pentenoic acid. Based on these results, a degradation pathway of 1,2,4-TCB through cyt P450 monooxygenase and epoxide hydrolase was proposed.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1,2,4-Trichlorobenzene, anhydrous, ≥99%
Sigma-Aldrich
1,2,4-Trichlorobenzene, suitable for HPLC, ≥99%
Supelco
1,2,4-Trichlorobenzene, PESTANAL®, analytical standard
Sigma-Aldrich
1,2,4-Trichlorobenzene, ReagentPlus®, ≥99%