Skip to Content
Merck
  • Detective quantum efficiency measured as a function of energy for two full-field digital mammography systems.

Detective quantum efficiency measured as a function of energy for two full-field digital mammography systems.

Physics in medicine and biology (2009-04-23)
N W Marshall
ABSTRACT

This paper presents detective quantum efficiency (DQE) data measured for a range of x-ray beam qualities for two full-field digital mammography (FFDM) systems: a caesium iodide (CsI) detector-based unit and a system designed around an amorphous selenium (a-Se) x-ray detector. Four beam qualities were studied for each system, covering mean energies from 17.8 keV to 23.4 keV for the CsI system and 17.8 keV to 24.7 keV for the a-Se unit. These were set using 2, 4, 6 and 7 cm polymethylmethacralate (PMMA) and typical tube voltage and target/filter combinations selected by the automatic exposure control (AEC) program used clinically on these systems. Normalized noise power spectra (NNPS) were calculated from flood images acquired at these beam qualities for a target detector air kerma of 100 microGy. Modulation transfer function (MTF) data were acquired at 28 kV and Mo/Mo target/filter setting. The DQE was then calculated from the MTF and NNPS results. For comparison, the quantum detective efficiency (QDE) and energy absorption efficiency (EAE) were calculated from tabulated narrow beam spectral data. With regard to detector response, some energy dependence was noted for pixel value plotted against air kerma at the detector. This amounted to a change in the gradient of the detector response of approximately 15% and 30% per keV for the CsI- and a-Se-based systems, respectively. For the DQE results, a reduction in DQE(0) of 22% was found for the CsI-based unit as beam quality changed from 25 kV Mo/Mo and 2 cm PMMA to 32 kV Rh/Rh and 7 cm PMMA. For the a-Se system, a change in beam quality from 25 kV Mo/Mo and 2 cm PMMA to 34 kV Mo/Rh and 7 cm PMMA led to a reduction in DQE(0) of 8%. Comparing measured data with simple calculations, a reduction in x-ray quantum detection efficiency of 27% was expected for the CsI-based system, while a reduction of 11% was predicted for the a-Se system.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cesium iodide, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Cesium iodide, 99.999% trace metals basis
Supelco
Cesium iodide, analytical standard, suitable for mass spectrometry (MS)
Sigma-Aldrich
Cesium iodide, 99.9% trace metals basis