Skip to Content
Merck
  • Endothelial heparanase regulates heart metabolism by stimulating lipoprotein lipase secretion from cardiomyocytes.

Endothelial heparanase regulates heart metabolism by stimulating lipoprotein lipase secretion from cardiomyocytes.

Arteriosclerosis, thrombosis, and vascular biology (2013-03-09)
Ying Wang, Dahai Zhang, Amy Pei-Ling Chiu, Andrea Wan, Katharina Neumaier, Israel Vlodavsky, Brian Rodrigues
ABSTRACT

After diabetes mellitus, transfer of lipoprotein lipase (LPL) from cardiomyocytes to the coronary lumen increases, and this requires liberation of LPL from the myocyte surface heparan sulfate proteoglycans with subsequent replenishment of this reservoir. At the lumen, LPL breaks down triglyceride to meet the increased demand of the heart for fatty acid. Here, we examined the contribution of coronary endothelial cells (ECs) toward regulation of cardiomyocyte LPL secretion. Bovine coronary artery ECs were exposed to high glucose, and the conditioned medium was used to treat cardiomyocytes. EC-conditioned medium liberated LPL from the myocyte surface, in addition to facilitating its replenishment. This effect was attributed to the increased heparanase content in EC-conditioned medium. Of the 2 forms of heparanase secreted from EC in response to high glucose, active heparanase released LPL from the myocyte surface, whereas latent heparanase stimulated reloading of LPL from an intracellular pool via heparan sulfate proteoglycan-mediated RhoA activation. Endothelial heparanase is a participant in facilitating LPL increase at the coronary lumen. These observations provide an insight into the cross-talk between ECs and cardiomyocytes to regulate cardiac metabolism after diabetes mellitus.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lipoprotein Lipase from Pseudomonas sp., lyophilized, powder, ≥1200 U/mg
Sigma-Aldrich
Lipoprotein Lipase from bovine milk, ammonium sulfate suspension, ≥2,000 units/mg protein (BCA)
Sigma-Aldrich
β-Glucuronidase from limpets (Patella vulgata), Type L-II, lyophilized powder, 1,000,000-3,000,000 units/g solid
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-1, partially purified powder, ≥300,000 units/g solid
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type HP-2S, aqueous solution, ≥90,000 units/mL
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-5, lyophilized powder, ≥400,000 units/g solid
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type HP-2, aqueous solution, ≥100,000 units/mL
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-3, aqueous solution, ≥90,000 units/mL
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-2, aqueous solution, ≥85,000 units/mL
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-3AF, aqueous solution, ≥60,000 units/mL
Sigma-Aldrich
Oleoyl-L-α-lysophosphatidic acid sodium salt, ≥98%, solid
Sigma-Aldrich
β-Glucuronidase from bovine liver, Type B-1, ≥1,000,000 units/g solid
Sigma-Aldrich
Lipoprotein Lipase from Burkholderia sp., lyophilized powder, ≥50,000 units/mg solid
Sigma-Aldrich
β-Glucuronidase from bovine liver, Type B-3, ≥2,000,000 units/g solid
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, >20,000,000 units/g protein, recombinant, expressed in E. coli, aqueous glycerol solution
Sigma-Aldrich
β-Glucuronidase from Helix aspersa (garden snail), Type HA-4
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, ≥20,000 units/mg protein, recombinant, expressed in E. coli overproducing strain, lyophilized powder
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, Type IX-A, lyophilized powder, 1,000,000-5,000,000 units/g protein (30 min assay)
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, ≥10,000,000 units/g protein (30 min assay), recombinant, expressed in E. coli overproducing strain, lyophilized powder
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, aqueous glycerol solution, ≥5,000,000 units/g protein, pH 6.8 (biuret)
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, Type VII-A, lyophilized powder, 5,000,000-20,000,000 units/g protein, pH 6.8 (30 min assay)