Skip to Content
Merck
  • Enhancing vaccine antibody responses by targeting Clec9A on dendritic cells.

Enhancing vaccine antibody responses by targeting Clec9A on dendritic cells.

NPJ vaccines (2017-12-22)
Hae-Young Park, Peck S Tan, Ranmali Kavishna, Anna Ker, Jinhua Lu, Conrad E Z Chan, Brendon J Hanson, Paul A MacAry, Irina Caminschi, Ken Shortman, Sylvie Alonso, Mireille H Lahoud
ABSTRACT

Targeting model antigens (Ags) to Clec9A on DC has been shown to induce, not only cytotoxic T cells, but also high levels of Ab. In fact, Ab responses against immunogenic Ag were effectively generated even in the absence of DC-activating adjuvants. Here we tested if targeting weakly immunogenic putative subunit vaccine Ags to Clec9A could enhance Ab responses to a level likely to be protective. The proposed "universal" influenza Ag, M2e and the enterovirus 71 Ag, SP70 were linked to anti-Clec9A Abs and injected into mice. Targeting these Ags to Clec9A greatly increased Ab titres. For optimal responses, a DC-activating adjuvant was required. For optimal responses, a boost injection was also needed, but the high Ab titres against the targeting construct blocked Clec9A-targeted boosting. Heterologous prime-boost strategies avoiding cross-reactivity between the priming and boosting targeting constructs overcame this limitation. In addition, targeting small amounts of Ag to Clec9A served as an efficient priming for a conventional boost with higher levels of untargeted Ag. Using this Clec9A-targeted priming, conventional boosting strategy, M2e immunisation protected mice from infection with lethal doses of influenza H1N1 virus.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Donkey Anti-Mouse IgG Antibody, HRP conjugate, Species Adsorbed, Chemicon®, from donkey