Saltar al contenido
Merck

Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride.

Carbohydrate polymers (2013-04-03)
Jingquan Han, Chengjun Zhou, Alfred D French, Guangping Han, Qinglin Wu
RESUMEN

Regenerated cellulose nanoparticles (RCNs) including both elongated fiber and spherical structures were prepared from microcrystalline cellulose (MCC) and cotton using 1-butyl-3-methylimidazolium chloride followed by high-pressure homogenization. The crystalline structure of RCNs was cellulose II in contrast to the cellulose I form of the starting materials. Also, the RCNs have decreased crystallinity and crystallite size. The elongated RCNs produced from cotton and MCC had average lengths of 123 ± 34 and 112 ± 42 nm, and mean widths of 12 ± 5 and 12 ± 3 nm, respectively. The average diameter of spherical RCNs from MCC was 118 ± 32nm. The dimensions of the various RCNs were all well fitted with an asymmetrical log-normal distribution function. The RCN has a two-step pyrolysis, different from raw MCC and cotton that have a one-step process.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Cellulose, microcrystalline, powder, 20 μm
Sigma-Aldrich
Cellulose, microcrystalline, powder
Sigma-Aldrich
Cellulose, fibers, (medium)
Sigma-Aldrich
Cellulose, Type 20, 20 μm
Sigma-Aldrich
α-Cellulose, powder
Sigma-Aldrich
Cellulose, colloidal, microcrystalline
Sigma-Aldrich
Cellulose, Type 101, Highly purified, fibers
Sigma-Aldrich
Cellulose, Type 50, 50 μm
Sigma-Aldrich
α-Cellulose, BioReagent, suitable for insect cell culture
Supelco
Cellulose, ~50 μm particle size
Sigma-Aldrich
Cellulose, tested according to Ph. Eur.
Supelco
Cellulose, powder, for column chromatography
Supelco
Cellulose, DS-0, powder, suitable for thin layer chromatography (TLC)
Supelco
Cellulose, acid washed, powder, for column chromatography
Supelco
Cellulose, DFS-0, microcrystalline, suitable for thin layer chromatography (TLC)
Supelco
Cellulose, acid washed, from spruce, for column chromatography