- Electrocatalytic hydrodechlorination of 4-chlorobiphenyl in aqueous solution using palladized nickel foam cathode.
Electrocatalytic hydrodechlorination of 4-chlorobiphenyl in aqueous solution using palladized nickel foam cathode.
The electrocatalytic hydrodechlorination of 4-chlorobiphenyl on palladized nickel foam with high porous structure in an aqueous solution containing MeOH, bromide of hexadecyltrimethylammonium (CTAB), sodium acetate, and acetic acid were investigated in a membrane-separated flow-through cell. The Pd/Ni foam electrode was prepared by electroless deposition method, on which the Pd particles dispersed finely over Ni foam surface indicated by SEM-EDX analysis. The effects of current density, organic cosolvent, initial concentration, temperature, and flow rate on the hydrodechlorination of 4-chlorobiphenyl were examined. Methanol was among the best cosolvents and was used in preferential concentration of 50 vol%. Moderate current density (e.g., 2.23 mA cm(-2)), relatively high initial concentration, temperature, and flow rate were beneficial to improve the hydrodechlorination of 4-chlorobiphenyl. The current efficiencies for the conversion of 1mM 4-MCB decreased with increasing current density and range from 37.2% at 0.74 mA cm(-2) to 14.1% at 5.21 mA cm(-2) after 20 min electrolysis cut. Under the optimized conditions, 1mM of 4-MCB could be removed rapidly with the rate of 94.6% after 2h electrolysis, which gave current efficiencies and energy consumptions in range of 8.1-24.6% and 1.7-5.2 kW h kg(-1), respectively.