Skip to Content
MilliporeSigma
  • A theoretical investigation of the gas-phase oxidation reaction of the saturated tert-butyl radical.

A theoretical investigation of the gas-phase oxidation reaction of the saturated tert-butyl radical.

Chemphyschem : a European journal of chemical physics and physical chemistry (2006-11-09)
Jong-Ho Choi, Mi-Ja Nam, Sung-Eui Youn
ABSTRACT

The radical-radical reaction mechanisms and dynamics of ground-state atomic oxygen [O(3P)] with the saturated tert-butyl radical (t-C4H9) are investigated using the density functional method and the complete basis set model. Two distinctive reaction pathways are predicted to be in competition: addition and abstraction. The barrierless addition of O(3P) to t-C4H9 leads to the formation of an energy-rich intermediate (OC4H9) on the lowest doublet potential energy surface, which undergoes subsequent direct elimination or isomerization-elimination leading to various products: C3H6O + CH3, iso-C4H8O + H, C3H7O + CH2, and iso-C4H8 + OH. The respective microscopic reaction processes examined with the aid of statistical calculations, predict that the major addition pathway is the formation of acetone (C3H6O) + CH3 through a low-barrier, single-step cleavage. For the direct, barrierless H-atom abstraction mechanism producing iso-C4H8 (isobutene) + OH, which was recently reported in gas-phase crossed-beam investigations, the reaction is described in terms of both an abstraction process (major) and a short-lived addition dynamic complex (minor).

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Methylpropene, 99%