Skip to Content
MilliporeSigma
  • Analysis of the DNA sequence and duplication history of human chromosome 15.

Analysis of the DNA sequence and duplication history of human chromosome 15.

Nature (2006-03-31)
Michael C Zody, Manuel Garber, Ted Sharpe, Sarah K Young, Lee Rowen, Keith O'Neill, Charles A Whittaker, Michael Kamal, Jean L Chang, Christina A Cuomo, Ken Dewar, Michael G FitzGerald, Chinnappa D Kodira, Anup Madan, Shizhen Qin, Xiaoping Yang, Nissa Abbasi, Amr Abouelleil, Harindra M Arachchi, Lida Baradarani, Brian Birditt, Scott Bloom, Toby Bloom, Mark L Borowsky, Jeremy Burke, Jonathan Butler, April Cook, Kurt DeArellano, David DeCaprio, Lester Dorris, Monica Dors, Evan E Eichler, Reinhard Engels, Jessica Fahey, Peter Fleetwood, Cynthia Friedman, Gary Gearin, Jennifer L Hall, Grace Hensley, Ericka Johnson, Charlien Jones, Asha Kamat, Amardeep Kaur, Devin P Locke, Anuradha Madan, Glen Munson, David B Jaffe, Annie Lui, Pendexter Macdonald, Evan Mauceli, Jerome W Naylor, Ryan Nesbitt, Robert Nicol, Sinéad B O'Leary, Amber Ratcliffe, Steven Rounsley, Xinwei She, Katherine M B Sneddon, Sandra Stewart, Carrie Sougnez, Sabrina M Stone, Kerri Topham, Dascena Vincent, Shunguang Wang, Andrew R Zimmer, Bruce W Birren, Leroy Hood, Eric S Lander, Chad Nusbaum
ABSTRACT

Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplications in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lipase from Candida sp., recombinant, expressed in Aspergillus niger
Sigma-Aldrich
Lipase from Aspergillus oryzae, lyophilized, powder, white, ~50 U/mg
Sigma-Aldrich
Lipase from Candida rugosa, lyophilized, powder (fine), 15-25 U/mg
Sigma-Aldrich
Lipase from Rhizopus niveus, powder (fine), ≥1.5 U/mg
Sigma-Aldrich
Lipase from Candida rugosa, powder, yellow-brown, ≥2 U/mg
Sigma-Aldrich
Lipase from Rhizopus oryzae, powder (fine), ~10 U/mg
Sigma-Aldrich
Lipase from Aspergillus oryzae, ≥20,000 U/g
Sigma-Aldrich
Acyl-coenzyme A Synthetase from Pseudomonas sp., ≥2 units/mg protein
Sigma-Aldrich
Lipase from Mucor miehei, powder, slightly brown, ~1 U/mg
Sigma-Aldrich
Lipase acrylic resin, ≥5,000 U/g, recombinant, expressed in Aspergillus niger
Sigma-Aldrich
Phospholipase A2 from honey bee venom (Apis mellifera), salt-free, lyophilized powder, 600-2400 units/mg protein
Sigma-Aldrich
Lipase from Candida rugosa, Type VII, ≥700 unit/mg solid
Sigma-Aldrich
Lipase from Pseudomonas sp., Type XIII, lyophilized powder, ≥15 units/mg solid
Sigma-Aldrich
Pyruvate Kinase from rabbit muscle, Type II, ammonium sulfate suspension, 350-600 units/mg protein
Sigma-Aldrich
Lipase from porcine pancreas, Type II, ≥125 units/mg protein (using olive oil (30 min incubation)), 30-90 units/mg protein (using triacetin)
Sigma-Aldrich
Lipase from porcine pancreas, Type VI-S, ≥20,000 units/mg protein, lyophilized powder
Sigma-Aldrich
Lipase from wheat germ, Type I, lyophilized powder, 5-15 units/mg solid
Sigma-Aldrich
Lipase from Mucor miehei, lyophilized powder, ≥4,000 units/mg solid (using olive oil)
Sigma-Aldrich
Pyruvate Kinase from rabbit muscle, Type III, lyophilized powder, 350-600 units/mg protein
Sigma-Aldrich
Pyruvate Kinase from rabbit muscle, Type VII, buffered aqueous glycerol solution, 350-600 units/mg protein
Sigma-Aldrich
Phosphomannose Isomerase from Escherichia coli, recombinant, expressed in E. coli, ammonium sulfate suspension, ≥50 units/mg protein
Sigma-Aldrich
Lipase from Candida rugosa, lyophilized powder, ≥40,000 units/mg protein
Sigma-Aldrich
Lipase from Pseudomonas cepacia, powder, light beige, ≥30 U/mg
Sigma-Aldrich
Lipase A Candida antarctica, recombinant from Aspergillus oryzae, powder, beige, ~2 U/mg
Sigma-Aldrich
Lipase from Aspergillus niger, powder (fine), ~200 U/g
Sigma-Aldrich
Lipase immobilized from Candida antarctica, beads, slightly brown, >2 U/mg
Sigma-Aldrich
Phospholipase A2 from porcine pancreas, ammonium sulfate suspension, ≥600 units/mg protein
Sigma-Aldrich
Lipase from Mucor javanicus, lyophilized powder, ≥300 units/mg solid (using olive oil)
Sigma-Aldrich
Phospholipase A2 from bovine pancreas, lyophilized powder, ≥20 units/mg protein
Sigma-Aldrich
Pyruvate Kinase from Bacillus stearothermophilus, Type VIII, lyophilized powder, 100-300 units/mg protein