Skip to Content
Merck
  • Tacrine sinusoidal uptake and biliary excretion in sandwich-cultured primary rat hepatocytes.

Tacrine sinusoidal uptake and biliary excretion in sandwich-cultured primary rat hepatocytes.

Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques (2014-09-17)
Loqman A Mohamed, Amal Kaddoumi
ABSTRACT

PURPOSE. The knowledge of hepatic disposition kinetics of tacrine, a first cholinesterase inhibitor was approved by FDA for the treatment of Alzheimer's disease (AD), would help to understand its hepatotoxicity, its therapeutic effect, and improve the management of patients with AD. The current study aims to characterize tacrine hepatic transport kinetics and study the role of organic cation transporters (OCTs), P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP2) in tacrine sinusoidal uptake and biliary excretion. METHODS. Modulation of tacrine hepatic uptake and efflux, biliary excretion index (BEI%), were performed in sandwich-cultured primary rat hepatocytes (SCHs) using transporters inhibitors. Conformation of the integrity of SCHs model was established by capturing images with light-contrast and fluorescence microscopy. RESULTS. Tacrine uptake in SCHs was carrier-mediated process and saturable with apparent Km of 31.5±9.6 µM and Vmax of 908±72 pmol/min/mg protein. Tetraethyl ammonium (TEA), cimetidine and verapamil significantly reduced tacrine uptake with more pronounced effect observed with verapamil which caused 3-fold reduction in tacrine uptake, indicating role for OCTs. Tacrine has a biliary excretion in SCHs with maximum BEI% value of 22.9±1.9% at 10 min of incubation. Addition of MK571 and valspodar decreased the BEI% of tacrine by 40 and 60% suggesting roles for canalicular MRP2 and P-gp, respectively. CONCLUSIONS. Our results show that in addition to metabolism, tacrine hepatic disposition is carrier-mediated process mediated by sinusoidal OCTs, and canalicular MRP2 and P-gp.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
9-Amino-1,2,3,4-tetrahydroacridine hydrochloride hydrate, ≥99%
Sigma-Aldrich
9-Amino-1,2,3,4-tetrahydroacridine hydrochloride hydrate, ≥99%
Sigma-Aldrich
(±)-Verapamil hydrochloride, ≥99% (titration), powder
Sigma-Aldrich
Fluvoxamine maleate, solid
USP
Fluvoxamine maleate, United States Pharmacopeia (USP) Reference Standard
Supelco
(±)-Verapamil hydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Dexamethasone for peak identification, European Pharmacopoeia (EP) Reference Standard
Fluvoxamine maleate, European Pharmacopoeia (EP) Reference Standard
Supelco
Tetraethylammonium chloride, for electrochemical analysis, ≥99.0%
Sigma-Aldrich
Selenous acid, 98%
Sigma-Aldrich
Selenous acid, 99.999% trace metals basis
Sigma-Aldrich
Dexamethasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
Dexamethasone, meets USP testing specifications
Sigma-Aldrich
Tetraethylammonium chloride, ≥98% (titration)
Sigma-Aldrich
Dexamethasone, tested according to Ph. Eur.
Sigma-Aldrich
Tetraethylammonium chloride, BioUltra, for molecular biology, ≥99.0% (AT)
Supelco
Dexamethasone, VETRANAL®, analytical standard
Verapamil hydrochloride, European Pharmacopoeia (EP) Reference Standard
Dexamethasone, British Pharmacopoeia (BP) Assay Standard
Supelco
Dexamethasone, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Dexamethasone, United States Pharmacopeia (USP) Reference Standard
Dexamethasone for system suitability, European Pharmacopoeia (EP) Reference Standard
USP
Verapamil hydrochloride, United States Pharmacopeia (USP) Reference Standard
Dexamethasone, European Pharmacopoeia (EP) Reference Standard
Fluvoxamine for system suitability, European Pharmacopoeia (EP) Reference Standard