Skip to Content
Merck
  • Modulation by propranolol of the uptake of ethidium bromide by rat submandibular acinar cells exposed to a P2X(7) agonist or to maitotoxin.

Modulation by propranolol of the uptake of ethidium bromide by rat submandibular acinar cells exposed to a P2X(7) agonist or to maitotoxin.

Cellular signalling (2001-08-23)
E Alzola, N Chaïb, S Pochet, E Kabré, A Marino, J P Dehaye
ABSTRACT

We have compared the formation of pores in rat submandibular acinar cells in response to 2',3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (Bz-ATP) and maitotoxin. Bz-ATP (100 microM) permeabilized the cells to ethidium bromide. The uptake of ethidium increased to 29+/-1% of maximal uptake in 10 min. DL-Propranolol (300 microM) inhibited the Bz-ATP-induced uptake of ethidium bromide by 40% without affecting the P2X(7)-gated cation channel. The inhibitory effect of DL-propranolol on the formation of pores by Bz-ATP was reproduced by D-propranolol, an optical isomer with very poor beta-blocking activity. Tenidap, an antiinflammatory drug, enhanced the permeabilization in response to Bz-ATP. Propanolol inhibited the response to tenidap plus Bz-ATP. The effect of propranolol was reproduced by labetolol, a beta-adrenergic antagonist with membrane-stabilizing properties, but not by atenolol, which blocks beta-adrenergic receptors but has no effect on the stability of the membrane. In the presence of extracellular calcium, maitotoxin also increased the uptake of ethidium bromide. Tenidap had no effect on this response, which was delayed by propranolol. In conclusion, we have shown that propranolol, in a range of 10-300 microM, inhibits the pore-forming activity of the P2X(7) receptor without affecting the opening of the cation channel coupled to this receptor. This inhibition is not related to its beta-adrenergic blocking activity but rather to its membrane-stabilizing properties. Propranolol also delays the uptake of ethidium bromide in response to maitotoxin. This is in agreement with the current view that P2X(7) agonists and maitotoxin share a common pore.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tenidap, ≥97% (HPLC)