- Dithiothreitol supplementation mitigates hepatic and renal injury in bile duct ligated mice: Potential application in the treatment of cholestasis-associated complications.
Dithiothreitol supplementation mitigates hepatic and renal injury in bile duct ligated mice: Potential application in the treatment of cholestasis-associated complications.
Cholestasis is a disorder characterized by impaired bile flow and accumulation of cytotoxic bile acids in the liver. On the other hand, oxidative stress and its deleterious consequences seem to have a significant role in cholestasis-induced organ injury. Hence, antioxidants and thiol-reducing agents could have potential protective effect against this complication. The current investigation was designed to evaluate the effect of dithiothreitol (DTT) as a safe and clinically applicable thiol-reductant in cholestatic animals. DTT is a dithiol compound which effectively reduces disulfide bonds in glutathione molecule or different proteins and preserves cellular redox environment. Bile duct ligated (BDL) mice were supplemented with DTT-containing drinking water (0.25% and 1% w: v) for 14 days. Blood, liver, kidney, and spleen samples were collected at scheduled time intervals (3, 7, and 14 days after BDL operation). Significant elevation in plasma biomarkers of liver and kidney injury was detected in BDL animals. Liver and kidney injury was also histopathologically evident by necrosis, inflammation, and fibrosis. Furthermore, high levels of reactive oxygen species in addition to lipid peroxidation, depleted glutathione reservoirs, and impaired tissue antioxidant capacity was detected in the liver and kidney of cholestatic animals. It was found that DTT supplementation (0.25% and 1% w:v) alleviated markers of oxidative stress in the liver and kidney. Moreover, liver and kidney histopathological changes and collagen deposition were markedly attenuated by DTT treatment. The beneficial effects of DTT administration in cholestasis and its associated complications might be linked to its ability for preserving cellular redox environment and preventing oxidative stress.