Skip to Content
Merck
  • Cucurbitacin B Activates Bitter-Sensing Gustatory Receptor Neurons via Gustatory Receptor 33a in Drosophila melanogaster.

Cucurbitacin B Activates Bitter-Sensing Gustatory Receptor Neurons via Gustatory Receptor 33a in Drosophila melanogaster.

Molecules and cells (2020-05-27)
Suman Rimal, Jiun Sang, Subash Dhakal, Youngseok Lee
ABSTRACT

The Gustatory system enables animals to detect toxic bitter chemicals, which is critical for insects to survive food induced toxicity. Cucurbitacin is widely present in plants such as cucumber and gourds that acts as an anti-herbivore chemical and an insecticide. Cucurbitacin has a harmful effect on insect larvae as well. Although various beneficial effects of cucurbitacin such as alleviating hyperglycemia have also been documented, it is not clear what kinds of molecular sensors are required to detect cucurbitacin in nature. Cucurbitacin B, a major bitter component of bitter melon, was applied to induce action potentials from sensilla of a mouth part of the fly, labellum. Here we identify that only Gr33a is required for activating bitter-sensing gustatory receptor neurons by cucurbitacin B among available 26 Grs, 23 Irs, 11 Trp mutants, and 26 Gr-RNAi lines. We further investigated the difference between control and Gr33a mutant by analyzing binary food choice assay. We also measured toxic effect of Cucurbitacin B over 0.01 mM range. Our findings uncover the molecular sensor of cucurbitacin B in Drosophila melanogaster. We propose that the discarded shell of Cucurbitaceae can be developed to make a new insecticide.

MATERIALS
Product Number
Brand
Product Description

Cucurbitacin B, phyproof® Reference Substance