Przejdź do zawartości
Merck
  • Enhanced gene delivery in porcine vasculature tissue following incorporation of adeno-associated virus nanoparticles into porous silicon microparticles.

Enhanced gene delivery in porcine vasculature tissue following incorporation of adeno-associated virus nanoparticles into porous silicon microparticles.

Journal of controlled release : official journal of the Controlled Release Society (2014-09-03)
Kellie I McConnell, Jessica Rhudy, Kenji Yokoi, Jianhua Gu, Aaron Mack, Junghae Suh, Saverio La Francesca, Jason Sakamoto, Rita E Serda
ABSTRAKT

There is an unmet clinical need to increase lung transplant successes, patient satisfaction and to improve mortality rates. We offer the development of a nanovector-based solution that will reduce the incidence of lung ischemic reperfusion injury (IRI) leading to graft organ failure through the successful ex vivo treatment of the lung prior to transplantation. The innovation is in the integrated application of our novel porous silicon (pSi) microparticles carrying adeno-associated virus (AAV) nanoparticles, and the use of our ex vivo lung perfusion/ventilation system for the modulation of pro-inflammatory cytokines initiated by ischemic pulmonary conditions prior to organ transplant that often lead to complications. Gene delivery of anti-inflammatory agents to combat the inflammatory cascade may be a promising approach to prevent IRI following lung transplantation. The rationale for the device is that the microparticle will deliver a large payload of virus to cells and serve to protect the AAV from immune recognition. The microparticle-nanoparticle hybrid device was tested both in vitro on cell monolayers and ex vivo using either porcine venous tissue or a pig lung transplantation model, which recapitulates pulmonary IRI that occurs clinically post-transplantation. Remarkably, loading AAV vectors into pSi microparticles increases gene delivery to otherwise non-permissive endothelial cells.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, packaged for use in deposition systems, ≥98%
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, ≥98.0%
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, 99%
Sigma-Aldrich
Hematoxylin
Sigma-Aldrich
Hematoxylin, certified by the Biological Stain Commission
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, ≥98%