Przejdź do zawartości
Merck
  • Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway.

Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway.

The New phytologist (2015-01-28)
Jonas Van Bockhaven, Lukáš Spíchal, Ondřej Novák, Miroslav Strnad, Takayuki Asano, Shoshi Kikuchi, Monica Höfte, David De Vleesschauwer
ABSTRAKT

Although numerous studies have shown the ability of silicon (Si) to mitigate a wide variety of abiotic and biotic stresses, relatively little is known about the underlying mechanism(s). Here, we have investigated the role of hormone defense pathways in Si-induced resistance to the rice brown spot fungus Cochliobolus miyabeanus. To delineate the involvement of multiple hormone pathways, a multidisciplinary approach was pursued, combining exogenous hormone applications, pharmacological inhibitor experiments, time-resolved hormone measurements, and bioassays with hormone-deficient and/or -insensitive mutant lines. Contrary to other types of induced resistance, we found Si-induced brown spot resistance to function independently of the classic immune hormones salicylic acid and jasmonic acid. Our data also rule out a major role of the abscisic acid (ABA) and cytokinin pathways, but suggest that Si mounts resistance to C. miyabeanus by preventing the fungus from hijacking the rice ethylene (ET) machinery. Interestingly, rather than suppressing rice ET signaling per se, Si probably interferes with the production and/or action of fungal ET. Together our findings favor a scenario whereby Si induces brown spot resistance by disarming fungal ET and argue that impairment of pathogen virulence factors is a core resistance mechanism underpinning Si-induced plant immunity.

MATERIAŁY
Numer produktu
Marka
Opis produktu

USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Supelco
Ethephon, PESTANAL®, analytical standard
Sigma-Aldrich
Cobalt(II) chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
6-Benzylaminopurine, ReagentPlus®, ≥99.0% (HPLC)
Sigma-Aldrich
Cobalt(II) chloride, AnhydroBeads, −10 mesh, 99.995% trace metals basis
Sigma-Aldrich
trans-Zeatin hydrochloride, suitable for plant cell culture, ≥97%
Sigma-Aldrich
Sodium Thiosulfate Solution, 2 g/dL in deionized water
Sigma-Aldrich
6-Benzylaminopurine, suitable for plant cell culture
Sigma-Aldrich
Silicic acid, BioReagent, suitable for column chromatography, 100-200 mesh (75 - 150 μm)
Sigma-Aldrich
1-Aminocyclopropanecarboxylic acid, ≥98% (TLC), powder
Sigma-Aldrich
Silicic acid, suitable for column chromatography, 60-200 mesh
Sigma-Aldrich
Silicic acid, BioReagent, suitable for column chromatography, 200-400 mesh (38 - 75 μm)
Sigma-Aldrich
Ethephon, ≥96% (titration)
Sigma-Aldrich
Gibberellin, 80% gibberellin A3 basis (TLC)
Sigma-Aldrich
(+)-Abscisic acid, ≥98% (HPLC)
Supelco
6-Benzylaminopurine, PESTANAL®, analytical standard
Sigma-Aldrich
Cobalt(II) chloride, purum p.a., anhydrous, ≥98.0% (KT)
Sigma-Aldrich
Cobalt(II) chloride, 97%
Sigma-Aldrich
Gibberellic acid, 90% gibberellin A3 basis (HPLC)
Sigma-Aldrich
Sodium thiosulfate, ≥99.99% trace metals basis
Supelco
Gibberellic acid, PESTANAL®, analytical standard
Sigma-Aldrich
trans-Zeatin, BioReagent, suitable for plant cell culture, ≥97%
Sigma-Aldrich
Gibberellic acid potassium salt, suitable for plant cell culture, BioReagent, ~95%, ≥50% total GA3 basis
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
Gibberellic acid, suitable for plant cell culture, BioReagent, ≥90% gibberellin A3 basis (of total gibberellins.)
Sigma-Aldrich
2,2′-Bipyridyl, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium thiosulfate, ReagentPlus®, 99%
Sigma-Aldrich
Sodium thiosulfate, purum p.a., anhydrous, ≥98.0% (RT)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%