Skip to Content
Merck
  • Magnesium isoglycyrrhizinate protects hepatic L02 cells from ischemia/reperfusion induced injury.

Magnesium isoglycyrrhizinate protects hepatic L02 cells from ischemia/reperfusion induced injury.

International journal of clinical and experimental pathology (2014-09-10)
Xinli Huang, Jianjie Qin, Sen Lu
ABSTRACT

Human liver ischemia/reperfusion injury (IRI) is a common and major clinical problem complicating liver surgery and transplantation. The pathogenesis underlying IRI is complex, involving a series of signaling mediators and mechanisms. This study aimed to investigate the effects of Magnesium Isoglycyrrhizinate (MgIG) on the changes of oxidant stress and apoptosis induced by IRI in human hepatic L02 cells. L02 cells with IRI were treated with or without MgIG and mitoKATP (Mitochondrial adenosine triphosphate-dependent potassium) channel modulators. Cell viability was assessed using CCK-8 assay. Cell apoptosis was quantified by flow cytometry. The activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured. Effects of MgIG on the expression of Bax, Bcl-2, Caspase 3, PARP (poly ADP-ribose polymerase), Akt, and ERK in L02 cells with IRI were examined. Our results showed that MgIG treatment significantly reduced the population of apoptotic cells and the expression of apoptosis-related proteins in hepatic L02 cells with IRI. MgIG also counteract ischemia reperfusion induced oxidative challenge as it effectively reduced malondialdehyde (MDA) and increased the activities of SOD and GSH-Px. L02 cells treated with MgIG showed increased expression of p-Akt and p-ERK, indicating that the protective effect of MgIG might be associated with the activation of Akt and ERK pathways. Moreover, the addition of Diazoxide (DE), a mitoKATP channel opener, enhanced the cytoprotective activity of MgIG, while the mitoKATP blocker 5-hydroxydecanoate (5-HD) reduced the cytoprotective activity of MgIG.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Silica, mesostructured, SBA-15, 99% trace metals basis
SAFC
HEPES
Sigma-Aldrich
Silica, nanopowder, 99.8% trace metals basis
Sigma-Aldrich
Silicon dioxide, nanopowder, 10-20 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Silicon dioxide, nanopowder (spherical, porous), 5-20 nm particle size (TEM), 99.5% trace metals basis
Sigma-Aldrich
Silica, mesostructured, MCM-41 type (hexagonal)
Sigma-Aldrich
Silicon dioxide, single crystal substrate, optical grade, 99.99% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
Supelco
Glass spheres
Sigma-Aldrich
Silicon dioxide, granular, ≥99.9%
Sigma-Aldrich
Silicon dioxide, washed and calcined, analytical reagent
Supelco
Silica, 99.8%
Sigma-Aldrich
Silicon dioxide, acid washed and calcined, Analytical Reagent
Sigma-Aldrich
LUDOX® CL colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
Silicon dioxide, fused (granular), 4-20 mesh, 99.9% trace metals basis
Sigma-Aldrich
LUDOX® TM-40 colloidal silica, 40 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® LS colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® HS-30 colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® SM colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
Silicon dioxide, −325 mesh, 99.5% trace metals basis
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Silica, fumed, powder, 0.2-0.3 μm avg. part. size (aggregate)
Sigma-Aldrich
Diazoxide
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Silica, mesostructured, MSU-F (cellular foam)
Sigma-Aldrich
Silica, fumed, powder
SAFC
HEPES
Sigma-Aldrich
Silica, nanoparticles, mesoporous, 200 nm particle size, pore size 4 nm
Sigma-Aldrich
Silica