Skip to Content
Merck
  • Shape control of cellulose nanocrystals via compositional acid hydrolysis.

Shape control of cellulose nanocrystals via compositional acid hydrolysis.

Journal of biomedical nanotechnology (2013-08-06)
Changyoon Baek, Zahid Hanif, Seung-Woo Cho, Dong-Ik Kim, Soong Ho Um
ABSTRACT

The current medical technology has constantly demanded novel and advanced materials exhibiting the unique physicochemical properties but, at the same time, possessing the intrinsic biocompatibility. Natural biomolecules based on materials such as peptide- (or protein-) or DNA/RNA derivatives have been formerly considered. To date, a carbohydrate-derived molecule has been a highlight as a substitute with the prior biomaterials, which suffer from their sequence-dependent immuno-cytoxicity. Of most, cellulose based materials have had a profound interest due to the great mechanical and optochemical properties as well as its immune-friendliness. However, it has been further manipulated in order to get distinctive structures at the desired shape and scale. Here, we report the versatile and synthetic technique to prepare spherical or rod-like cellulose nanocrystals (CNC). Under the varying concentrations of strong sulfuric acids (H2SO4) and hydrochloric acids (HCI), spherical or rod-typed CNCs were selectively manufactured via acid hydrolysis of microcrystalline celluloses (MCC) in massive bundles. At the sequential addition of H2SO4 and HCI in 1 to 2.5 molar ratios, most interestingly, the spherical CNC alone was observed with the average size of 50 nm in narrow distribution. All of CNCs had the larger surface area with mesoporosity. In addition, it was confirmed by the crystallographic measurement that it was very similar to the maternal structure originating from the bundle celluloses. It is much anticipated that the porous cellulose nanocrystals may play a principal role as a potential drug carrier for diseased biological compartments.

MATERIALS
Product Number
Brand
Product Description

Supelco
Sulfuric acid, for the determination of nitrogen, ≥97.0%
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur
Sigma-Aldrich
Sulfuric acid, 99.999%
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Sulfuric acid, ACS reagent, 95.0-98.0%
Sigma-Aldrich
Hydrochloric acid, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Sulfuric acid, puriss., meets analytical specification of Ph. Eur., BP, 95-97%
Sigma-Aldrich
Sigmacell Cellulose, Type 20, 20 μm
Sigma-Aldrich
Sigmacell Cellulose, Type 101, Highly purified, fibers
Supelco
Avicel® PH-101, ~50 μm particle size
Sigma-Aldrich
Sigmacell Cellulose, Type 50, 50 μm
Sigma-Aldrich
α-Cellulose, BioReagent, suitable for insect cell culture
Sigma-Aldrich
α-Cellulose, powder
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in diethyl ether
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in acetic acid
Sigma-Aldrich
Hydrogen chloride solution, 2.0 M in diethyl ether
Sigma-Aldrich
Hydrogen chloride solution, 4.0 M in dioxane
Sigma-Aldrich
Hydrochloric acid, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Supelco
Hydrogen chloride - 1-butanol solution, ~3 M in 1-butanol, for GC derivatization, LiChropur
Supelco
Cellulose, powder, for column chromatography
Supelco
Cellulose, acid washed, from spruce, for column chromatography
Sigma-Aldrich
Avicel® PH-101, tested according to Ph. Eur.
Supelco
Cellulose, DFS-0, microcrystalline, suitable for thin layer chromatography (TLC)