Skip to Content
Merck
  • Enantioseparation of omeprazole--effect of different packing particle size on productivity.

Enantioseparation of omeprazole--effect of different packing particle size on productivity.

Journal of chromatography. A (2012-05-01)
Martin Enmark, Jörgen Samuelsson, Patrik Forssén, Torgny Fornstedt
ABSTRACT

Enantiomeric separation of omeprazole has been extensively studied regarding both product analysis and preparation using several different chiral stationary phases. In this study, the preparative chiral separation of omeprazole is optimized for productivity using three different columns packed with amylose tris (3,5-dimethyl phenyl carbamate) coated macroporous silica (5, 10 and 25 μm) with a maximum allowed pressure drop ranging from 50 to 400 bar. This pressure range both covers low pressure process systems (50-100 bar) and investigates the potential for allowing higher pressure limits in preparative applications in a future. The process optimization clearly show that the larger 25 μm packing material show higher productivity at low pressure drops whereas with increasing pressure drops the smaller packing materials have substantially higher productivity. Interestingly, at all pressure drops, the smaller packing material result in lower solvent consumption (L solvent/kg product); the higher the accepted pressure drop, the larger the gain in reduced solvent consumption. The experimental adsorption isotherms were not identical for the different packing material sizes; therefore all calculations were recalculated and reevaluated assuming identical adsorption isotherms (with the 10 μm isotherm as reference) which confirmed the trends regarding productivity and solvent consumption.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Triethylamine, for amino acid analysis, ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, ≥99.5%
Sigma-Aldrich
Triethylamine, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, ≥99%
Sigma-Aldrich
Triethylamine, for protein sequence analysis, ampule, ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, ≥99.5%
Sigma-Aldrich
Triethylamine hydrochloride, ≥99.0% (AT)