- Inhibition of ClC-5 suppresses proliferation and induces apoptosis in cholangiocarcinoma cells through the Wnt/β-catenin signaling pathway.
Inhibition of ClC-5 suppresses proliferation and induces apoptosis in cholangiocarcinoma cells through the Wnt/β-catenin signaling pathway.
Chloride channel-5 (ClC-5), an important branch of the ClC family, is involved in the regulation of the proliferation and cell-fate of a variety of cells, including tumor cells. However, its function in cholangiocarcinoma (CCA) cells remains enigmatic. Here, we discovered that ClC-5 was up-regulated in CCA tissues and CCA cell lines, while ClC-5 silencing inhibited CCA cell proliferation and induced apoptosis. Further mechanism studies revealed that ClC-5 inhibition could inhibit Wnt/β-catenin signaling activity and further activate the mitochondria apoptotic pathway in CCA cells. Furthermore, rescuing Wnt/β-catenin signaling activation eliminated the anti-tumor function of ClC-5 knockdown. Together, our research findings illustrated that ClC-5 inhibition plays an anti-tumor role in CCA cells via inhibiting the activity of the Wnt/β-catenin pathway, which in turn activates the mitochondrial apoptotic pathway. [BMB Reports 2022; 55(6): 299-304].