Skip to Content
Merck
  • Synthesis and characterization of Gd-DTPA/fucoidan/peptide complex nanoparticle and in vitro magnetic resonance imaging of inflamed endothelial cells.

Synthesis and characterization of Gd-DTPA/fucoidan/peptide complex nanoparticle and in vitro magnetic resonance imaging of inflamed endothelial cells.

Materials science & engineering. C, Materials for biological applications (2020-10-01)
Tsai-Mu Cheng, Rou Li, Yu-Chieh Jill Kao, Chun-Hua Hsu, Hsueh-Liang Chu, Kun-Ying Lu, Chun A Changou, Che-Chang Chang, Lee-Hsin Chang, Min-Lang Tsai, Fwu-Long Mi
ABSTRACT

P-selectin overexpressed on activated endothelial cells and platelets is a new target for treatment of cancers and cardiovascular diseases such as atherosclerosis and thrombosis. In this study, depolymerized low molecular weight fucoidan (LMWF8775) and a thermolysin-hydrolyzed protamine peptide (TPP1880) were prepared. TPP1880 and LMWF8775 were able to form self-assembled complex nanoparticles (CNPs). The formation of TPP1880/LMWF8775 CNPs was characterized by Fourier-transform infrared spectra, circular dichroism spectra and isothermal titration calorimetry. The CNPs selectively targeted PMA-stimulated, inflamed endothelial cells (HUVECs) with high expression of P-selectin. Gd-DTPA MRI contrast agent was successfully loaded in the CNPs with better T1 relaxivity and selectively accumulated in the activated HUVECs with increased MRI intensity and reduced cytotoxicity as compared to free Gd-DTPA. Our results suggest that the TPP1880/LMWF8775 CNPs may have potential in future for early diagnosis of cardiovascular diseases and cancers in which the endothelium is inflamed or activated.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
4-Oxo-TEMPO