Skip to Content
Merck
  • Oncogenic KRAS-Driven Metabolic Reprogramming in Pancreatic Cancer Cells Utilizes Cytokines from the Tumor Microenvironment.

Oncogenic KRAS-Driven Metabolic Reprogramming in Pancreatic Cancer Cells Utilizes Cytokines from the Tumor Microenvironment.

Cancer discovery (2020-02-13)
Prasenjit Dey, Jun Li, Jianhua Zhang, Surendra Chaurasiya, Anders Strom, Huamin Wang, Wen-Ting Liao, Frederick Cavallaro, Parker Denz, Vincent Bernard, Er-Yen Yen, Giannicola Genovese, Pat Gulhati, Jielin Liu, Deepavali Chakravarti, Pingna Deng, Tingxin Zhang, Federica Carbone, Qing Chang, Haoqiang Ying, Xiaoying Shang, Denise J Spring, Bidyut Ghosh, Nagireddy Putluri, Anirban Maitra, Y Alan Wang, Ronald A DePinho
ABSTRACT

A hallmark of pancreatic ductal adenocarcinoma (PDAC) is an exuberant stroma comprised of diverse cell types that enable or suppress tumor progression. Here, we explored the role of oncogenic KRAS in protumorigenic signaling interactions between cancer cells and host cells. We show that KRAS mutation (KRAS*) drives cell-autonomous expression of type I cytokine receptor complexes (IL2rγ-IL4rα and IL2rγ-IL13rα1) in cancer cells that in turn are capable of receiving cytokine growth signals (IL4 or IL13) provided by invading Th2 cells in the microenvironment. Early neoplastic lesions show close proximity of cancer cells harboring KRAS* and Th2 cells producing IL4 and IL13. Activated IL2rγ-IL4rα and IL2rγ-IL13rα1 receptors signal primarily via JAK1-STAT6. Integrated transcriptomic, chromatin occupancy, and metabolomic studies identified MYC as a direct target of activated STAT6 and that MYC drives glycolysis. Thus, paracrine signaling in the tumor microenvironment plays a key role in the KRAS*-driven metabolic reprogramming of PDAC. SIGNIFICANCE: Type II cytokines, secreted by Th2 cells in the tumor microenvironment, can stimulate cancer cell-intrinsic MYC transcriptional upregulation to drive glycolysis. This KRAS*-driven heterotypic signaling circuit in the early and advanced tumor microenvironment enables cooperative protumorigenic interactions, providing candidate therapeutic targets in the KRAS* pathway for this intractable disease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
CRISPR/Cas9 Products and Services, Design and order CRISPR gRNA, Cas9, screening libraries, controls and companion products. Formats include plant, lentivirus, IVT-RNA, plasmid, synthetic, and protein.
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-74, purified immunoglobulin, buffered aqueous solution