- Increased Cell Detachment Ratio of Mesenchymal-Type Lung Cancer Cells on pH-Responsive Chitosan through the β3 Integrin.
Increased Cell Detachment Ratio of Mesenchymal-Type Lung Cancer Cells on pH-Responsive Chitosan through the β3 Integrin.
Chitosan is sensitive to environmental pH values due to its electric property. This study investigates whether the pH-responsive chitosan assay can provide a simple method to evaluate the aggressive behavior of cancer cells with cell detachment ratio. The epithelial-mesenchymal transition (EMT) is induced with transforming growth factor-β1 (TGF-β1) in the human non-small cell lung cancer cell line (A549). EMT-induced cells and untreated cells are cultured on chitosan substrates at pH 6.99 for 24 h, followed by pH 7.65 for 1 h. The cell detachment ratio (CDR) on pH-responsive chitosan rises with an increasing of the TGF-β1 concentration. The protein array reveals that the expression levels of the α2, α3, α5, β2, and β3 integrins are higher in EMT-induced A549 cells than in untreated cells. A further inhibition assay shows that adding β3 integrin blocking antibodies significantly decreases the CDR of EMT-induced cells from 32.7 ± 5.7% to 17.8 ± 2.1%. The CDR of mesenchymal-type lung cancer cells increases on pH-responsive chitosan through the β3 integrin. Notably, the CDR can be theoretically predicted according to the individual CDR on the pH-responsive chitosan surface, irrespective of heterogeneous cell mixture. The pH-responsive chitosan assay serves as a simple in vitro model to investigate the aggressive behavior of lung cancer including the heterogeneous cell population.