Skip to Content
Merck
All Photos(1)

Documents

675288

Sigma-Aldrich

PEDOT

nanoparticles, aqueous dispersion

Synonym(s):

PEDOT, Poly(2,3-dihydrothieno-1,4-dioxin)

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(C6H4O2S)n
CAS Number:
MDL number:
UNSPSC Code:
12352103
NACRES:
NA.23

product name

Poly(3,4-ethylenedioxythiophene), nanoparticles, dispersion, in H2O

form

dispersion
nanoparticles

contains

dodecylbenzene sulfonic acid (DBSA) as dopant

concentration

in H2O

storage temp.

2-8°C

General description

Poly(3,4-ethylenedioxythiophene)(PEDOT) is a conjugating polymer that has a conductivity of 300 S/cm. It can be copolymerized with poly(styrene-sulfonic acid) to form a water soluble polymeric film with high conductivity and transparency.

Application

PEDOT doped with graphene oxide (GO) may be coated on carbon electrodes to fabricate electrochemical sensors for nonenzymatic sensing of glucose. It can also be used as a conductive polymer which may act as a bridge between the electronic polymers and biomolecules for a variety of bioelectronics applications.

Storage Class Code

10 - Combustible liquids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly (3, 4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing.
Hui Ni, et al.
Sensors and Actuators B, Chemical, 221(4), 606-613 (2015)
Graphene oxide doped poly (3, 4-ethylenedioxythiophene) modified with copper nanoparticles for high performance nonenzymatic sensing of glucose.
Hui Ni, et al.
Journal of Material Chemistry B: Materials for Biology and Medicine, 3(4), 556-561 (2015)
Poly (3, 4-ethylenedioxythiophene)(PEDOT) derivatives: Innovative conductive polymers for bioelectronics.
Mantione D, et al.
Polymer, 9(8), 354-354 (2017)
Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future.
Groenendaal L, et al.
Advanced Materials, 12(7), 481-494 (2000)

Articles

Conjugated polymers offer charge transport between inorganic, electrically conducting metals and organic, proton-conducting biological systems.

Progress in Organic Thermoelectric Materials & Devices including high ZT values of >0.2 at room temperature by p-type (PEDOT:PSS) & n-type (Poly[Kx(Ni-ett)]) materials are discussed.

Professor Rivnay (Northwestern University, USA) discusses using organic mixed conductors as an alternative to efficiently bridge the ionic world of biology with contemporary microelectronics.

The application of conducting polymers at the interface with biology is an exciting new trend in organic electronics research.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service