Skip to Content
Merck

mTORC2 Promotes Tumorigenesis via Lipid Synthesis.

Cancer cell (2017-12-13)
Yakir Guri, Marco Colombi, Eva Dazert, Sravanth K Hindupur, Jason Roszik, Suzette Moes, Paul Jenoe, Markus H Heim, Isabelle Riezman, Howard Riezman, Michael N Hall
ABSTRACT

Dysregulated mammalian target of rapamycin (mTOR) promotes cancer, but underlying mechanisms are poorly understood. We describe an mTOR-driven mouse model that displays hepatosteatosis progressing to hepatocellular carcinoma (HCC). Longitudinal proteomic, lipidomics, and metabolomic analyses revealed that hepatic mTORC2 promotes de novo fatty acid and lipid synthesis, leading to steatosis and tumor development. In particular, mTORC2 stimulated sphingolipid (glucosylceramide) and glycerophospholipid (cardiolipin) synthesis. Inhibition of fatty acid or sphingolipid synthesis prevented tumor development, indicating a causal effect in tumorigenesis. Increased levels of cardiolipin were associated with tubular mitochondria and enhanced oxidative phosphorylation. Furthermore, increased lipogenesis correlated with elevated mTORC2 activity and HCC in human patients. Thus, mTORC2 promotes cancer via formation of lipids essential for growth and energy production.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Actin Antibody, clone C4, ascites fluid, clone C4, Chemicon®
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, pH 7, ≥98%
Sigma-Aldrich
L-Glutamine solution, 200 mM, solution, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Percoll®, pH 8.5-9.5 (20 °C)
Sigma-Aldrich
Penicillin-Streptomycin, Solution stabilized, with 10,000 units penicillin and 10 mg streptomycin/mL, 0.1 μm filtered, BioReagent, suitable for cell culture