Skip to Content
Merck
  • Angiotensin IV activates the nuclear transcription factor-kappaB and related proinflammatory genes in vascular smooth muscle cells.

Angiotensin IV activates the nuclear transcription factor-kappaB and related proinflammatory genes in vascular smooth muscle cells.

Circulation research (2005-04-16)
Vanesa Esteban, Mónica Ruperez, Elsa Sánchez-López, Juan Rodríguez-Vita, Oscar Lorenzo, Heidi Demaegdt, Patrick Vanderheyden, Jesús Egido, Marta Ruiz-Ortega
ABSTRACT

Inflammation is a key event in the development of atherosclerosis. Nuclear factor-kappaB (NF-kappaB) is important in the inflammatory response regulation. The effector peptide of the renin angiotensin system Angiotensin II (Ang II) activates NF-kappaB and upregulates some related proinflammatory genes. Our aim was to investigate whether other angiotensin-related peptides, as the N-terminal degradation peptide Ang IV, could regulate proinflammatory factors (activation of NF-kappaB and related genes) in cultured vascular smooth muscle cells (VSMCs). In these cells, Ang IV increased NF-kappaB DNA binding activity, caused nuclear translocation of p50/p65 subunits, cytosolic IkappaB degradation and induced NF-kappaB-dependent gene transcription. Ang II activates NF-kappaB via AT1 and AT2 receptors, but AT1 or AT2 antagonists did not inhibit NF-kappaB activation caused by Ang IV. In VSMC from AT1a receptor knockout mice, Ang IV also activated NF-kappaB pathway. In those cells, the AT4 antagonist divalinal diminished dose-dependently Ang IV-induced NF-kappaB activation and prevented IkappaB degradation, but had no effect on the Ang II response, indicating that Ang IV activates the NF-kappaB pathway via AT4 receptors. Ang IV also increased the expression of proinflammatory factors under NF-kappaB control, such as MCP-1, IL-6, TNF-alpha, ICAM-1, and PAI-1, which were blocked by the AT4 antagonist. Our results reveal that Ang IV, via AT4 receptors, activates NF-kappaB pathway and increases proinflammatory genes. These data indicate that Ang IV possesses proinflammatory properties, suggesting that this Ang degradation peptide could participate in the pathogenesis of cardiovascular diseases.