Skip to Content
Merck

Collagenase as an effective tool for drug quantitation in tissues.

Bioanalysis (2015-06-04)
Ann Ran-Ran Qin, Xiaorong Liang, Yuzhong Deng, Brian Dean, Sheerin K Shahidi-Latham
ABSTRACT

In early drug-discovery research, traditional techniques to analyze drug concentrations in tissues for bioanalytical needs include bead beaters and probe homogenization devices, but are not as effective for tough fibrous tissues. To prepare these tissues, the enzyme collagenase was used to digest the collagen fibers present in epithelial and connective tissue. The benefits of tissue homogenization using a bead beater following collagenase treatment of samples, as opposed to using bead beating alone, was investigated. Matrix effect, recovery factor and stability with and without collagenase were assessed. Little to no effects on the quality and reliability of collagenase treated samples were observed. This enzymatic approach is a feasible and effective tool for tissue homogenization and subsequent analysis by LC-MS/MS.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Sigma-Aldrich
Ammonium acetate, reagent grade, ≥98%
Sigma-Aldrich
Atenolol, ≥98% (TLC), powder
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Acetonitrile, AR, ≥99.5%