Skip to Content
Merck
  • Paternal breed effects on expression of IGF-II, BAK1 and BCL2-L1 in bovine preimplantation embryos.

Paternal breed effects on expression of IGF-II, BAK1 and BCL2-L1 in bovine preimplantation embryos.

Zygote (Cambridge, England) (2014-09-03)
Mehdi Vafaye Valleh, Mojtaba Tahmoorespur, Morteza Daliri Joupari, Hesam Dehghani, Mikkel Aabech Rasmussen, Poul Hyttel, Lotte Strøbech
ABSTRACT

The effects of the paternal breed on early embryo and later pre- and postnatal development are well documented. Several recent studies have suggested that such paternal effects may be mediated by the paternally induced epigenetic modifications during early embryogenesis. The objective of this study was to investigate the effects of the paternal breed on the early embryonic development and relative expression of the maternally imprinted gene, IGF-II, and the apoptosis-related genes BAK1 and BCL2-L1 in in vitro produced (IVP) bovine embryos derived from two unrelated paternal breeds (Holstein and Brown Swiss). The degree of correlation of IGF-II expression pattern with embryo developmental competence and apoptosis-related genes was also investigated. The relative abundance of IGF-II, BCL2-L1 and BAK1 transcripts in day 8 embryos was measured by quantitative reverse-transcription polymerase chain reaction using the comparative Cp method. Our data revealed that the paternal breed did not influence cleavage rate, blastocyst rate and relative abundance of IGF-II, BAK1 and BCL2-L1 in day 8 blastocysts (P > 0.05). Nevertheless, IGF-II expression levels were highly correlated with embryonic developmental competence (r = 0.66, P < 0.1), relative expression of BCL2-L1 (r = 0.72, P < 0.05) and ratio of BCL2-L1/BAK1 (r = 0.78, P < 0.05). In conclusion, our data show that IGF-II, BCL2-L1 and BAK1 expression is not related to the chosen combination of paternal breed, but that IGF-II expression is correlated with embryonic viability and apoptosis-related gene expression.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Ethidium bromide solution, for fluorescence, ~1% in H2O
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Potassium chloride, for molecular biology, ≥99.0%
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Magnesium sulfate solution, BioUltra, for molecular biology
Sigma-Aldrich
Sodium bicarbonate-12C, 99.9 atom % 12C
Sigma-Aldrich
Gentamicin sulfate salt, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethidium bromide, BioReagent, for molecular biology, powder
Sigma-Aldrich
Potassium phosphate monobasic, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Heparin sodium salt from porcine intestinal mucosa, Grade I-A, ≥180 USP units/mg, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Magnesium sulfate, BioReagent, suitable for cell culture, suitable for insect cell culture