Skip to Content
Merck
  • Changes of Adipose Tissue Morphology and Composition during Late Pregnancy and Early Lactation in Dairy Cows.

Changes of Adipose Tissue Morphology and Composition during Late Pregnancy and Early Lactation in Dairy Cows.

PloS one (2015-05-16)
Ákos Kenéz, Anna Kulcsár, Franziska Kluge, Idir Benbelkacem, Kathrin Hansen, Lena Locher, Ulrich Meyer, Jürgen Rehage, Sven Dänicke, Korinna Huber
ABSTRACT

Dairy cows mobilize large amounts of body fat during early lactation to overcome negative energy balance which typically arises in this period. As an adaptation process, adipose tissues of cows undergo extensive remodeling during late pregnancy and early lactation. The objective of the present study was to characterize this remodeling to get a better understanding of adaptation processes in adipose tissues, affected by changing metabolic conditions including lipid mobilization and refilling as a function of energy status. This was done by determining adipocyte size in histological sections of subcutaneous and retroperitoneal adipose tissue biopsy samples collected from German Holstein cows at 42 days prepartum, and 1, 21, and 100 days postpartum. Characterization of cell size changes was extended by the analysis of DNA, triacylglycerol, and protein content per gram tissue, and β-actin protein expression in the same samples. In both adipose tissue depots cell size was becoming smaller during the course of the study, suggesting a decrease in cellular triacylglycerol content. Results of DNA, triacylglycerol, and protein content, and β-actin protein expression could only partially explain the observed differences in cell size. The retroperitoneal adipose tissue exhibited a greater extent of time-related differences in cell size, DNA, and protein content, suggesting greater dynamics and metabolic flexibility for this abdominal depot compared to the investigated subcutaneous depot.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
2-Mercaptoethanol, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
2-Mercaptoethanol, ≥99.0%
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
2-Mercaptoethanol, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Bromophenol Blue, ACS reagent
Sigma-Aldrich
Bromophenol Blue, titration: suitable