Skip to Content
Merck
  • Comparability of higher order structure in proteins: chemometric analysis of second-derivative amide I Fourier transform infrared spectra.

Comparability of higher order structure in proteins: chemometric analysis of second-derivative amide I Fourier transform infrared spectra.

Journal of pharmaceutical sciences (2014-11-11)
Gregory Stockdale, Brian M Murphy, Jennifer D'Antonio, Mark Cornell Manning, Wasfi Al-Azzam
ABSTRACT

Comparing higher order structure (HOS) in therapeutic proteins is a significant challenge. Previously, we showed that changes in solution conditions produced detectable changes in the second-derivative amide I Fourier transform infrared (FTIR) spectra for a variety of model proteins. Those comparisons utilized vector-based approaches, such as spectral overlap and spectral correlation coefficients to quantify differences between spectra. In this study, chemometric analyses of the same data were performed, to classify samples into different groups based on the solution conditions received. The solution conditions were composed of various combinations of temperature, pH, and salt types. At first, principal component analysis (PCA) was used to visually demonstrate that FTIR spectra respond to changes in solution conditions, which, presumably indicates variations in HOS. This observed when samples from the same solution condition form clusters within a PCA score plot. The second approach, called soft independent modeling of class analogy (SIMCA), was conducted to account for the within-class experimental error for the lysozyme spectra. The DModX values, indicative of the distance of each spectra to their respective class models, was found to be a more sensitive quantitative indicator of changes in HOS, when compared with the modified area of overlap algorithm. The SIMCA approach provides a metric to determine whether new observations do, or do not belong to a particular class or group. Thus, SIMCA is the recommended approach when multiple samples from each condition are available.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycine, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Glycine, 99%, FCC
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Glycine, BioXtra, ≥99% (titration)
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Sodium phosphate monobasic-16O4, 99.9 atom % 16O
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Supelco
Glycine, analytical standard, for nitrogen determination according to Kjeldahl method
Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Supelco
Acetic acid, analytical standard
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Sodium acetate trihydrate, ACS reagent, ≥99%
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O