Skip to Content
Merck
  • Lysozyme-triggered epidermal growth factor release from bacterial cellulose membranes controlled by smart nanostructured films.

Lysozyme-triggered epidermal growth factor release from bacterial cellulose membranes controlled by smart nanostructured films.

Journal of pharmaceutical sciences (2014-10-14)
Guilherme Fadel Picheth, Maria Rita Sierakowski, Marco Aurelio Woehl, Lucy Ono, Axel Rulf Cofré, Luana Pasetti Vanin, Roberto Pontarolo, Rilton Alves De Freitas
ABSTRACT

A novel wound-dressing biodevice, sensitive to lysozyme, an enzyme commonly found at infected skin wounds, was assembled by the layer-by-layer deposition of nanopolymeric chitosan and alginate films onto oxidized bacterial cellulose membranes incorporated with epidermal growth factor (EGF). Distinct EGF release profiles were obtained according to specific stimuli caused by infection. In in vitro conditions simulating noninfected wounds, the EGF rate and burst release effect were reduced by three deposited layers (Mt /M∞ of 0.25 at 3 h) in a process dependent on the porosity of the compact chitosan-alginate complex. The importance of the organized structure was revealed when an infected wound was simulated by adding lysozyme to the release medium, thus inducing the formation of a loosely polyelectrolyte architecture that caused rapid EGF diffusion (Mt /M∞ of 0.75 at 30 min). The results indicate that the nanopolymeric layers were capable of slowly releasing EGF as required for normal wound repair and rapidly undergoing architectural transitions that allow the diffusion of massive amounts of drug to enhance the process of re-epithelialization. In summary, the proposed system comprises the roles of both wound dressing and local delivery mechanism to recognize infections and respond with a burst of EGF release.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Fluorescein isothiocyanate isomer I, suitable for protein labeling, ≥90% (HPLC), powder
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Sodium bromide, ReagentPlus®, ≥99%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Sodium hypochlorite solution, reagent grade, available chlorine 4.00-4.99 %
Sigma-Aldrich
Sodium bromide, ACS reagent, ≥99.0%
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
USP
Enrofloxacin, United States Pharmacopeia (USP) Reference Standard
Supelco
Enrofloxacin, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Enrofloxacin, VETRANAL®, analytical standard
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
TEMPO, purified by sublimation, 99%
Sigma-Aldrich
TEMPO, 98%
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, ≥90% (HPLC)