Skip to Content
Merck
  • Evaluation of stationary phases packed with superficially porous particles for the analysis of pharmaceutical compounds using supercritical fluid chromatography.

Evaluation of stationary phases packed with superficially porous particles for the analysis of pharmaceutical compounds using supercritical fluid chromatography.

Journal of chromatography. A (2014-08-19)
Alexandre Grand-Guillaume Perrenoud, William P Farrell, Christine M Aurigemma, Nicole C Aurigemma, Szabolcs Fekete, Davy Guillarme
ABSTRACT

Superficially porous particles (SPP), or core shell particles, which consist of a non-porous silica core surrounded by a thin shell of porous silica, have gained popularity as a solid support for chromatography over the last decade. In the present study, five unbonded silica, one diol, and two ethylpyridine (2-ethyl and 4-ethyl) SPP columns were evaluated under SFC conditions using two mixtures, one with 17 drug-like compounds and the other one with 7 drug-like basic compounds. Three of the SPP phases, SunShell™ 2-ethylpyridine (2-EP), Poroshell™ HILIC, and Ascentis(®) Express HILIC, exhibited superior performances relative to the others (reduced theoretical plate height (hmin) values of 1.9-2.5 for neutral compounds). When accounting for both achievable plate count and permeability of the support using kinetic plot evaluation, the Cortecs™ HILIC 1.6μm and Ascentis(®) Express HILIC 2.7μm phases were found to be the best choices among tested SPPs to reach efficiencies up to 30,000 plates in the minimum amount of time. For desired efficiencies ranging from 30,000 to 60,000 plates, the SunShell™ 2-EP 2.6μm column clearly outperformed all other SPPs. With the addition of a mobile phase additive such as 10mM ammonium formate, which was required to elute the basic components with sharp peaks, the Poroshell™ HILIC, SunShell™ Diol and SunShell™ 2-EP phases represent the most orthogonal SPP columns with the highest peak capacities. This study demonstrates the obvious benefits of using columns packed with SPP on current SFC instrumentation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ibuprofen, meets USP testing specifications
Supelco
Warfarin, analytical standard
Supelco
Ascentis® Si HPLC Column, 5 μm particle size, L × I.D. 25 cm × 10 mm
Supelco
Sulfadimethoxine, 98.0-102.0%
Sigma-Aldrich
Ammonium formate, BioUltra, ≥99.0% (calc. based on dry substance, NT)
Supelco
Sulfaquinoxaline, PESTANAL®, analytical standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Resorcinol, ACS reagent, ≥99.0%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Ammonium formate, ≥99.995% trace metals basis
Sigma-Aldrich
Heptane, anhydrous, 99%
Sigma-Aldrich
Resorcinol, ≥98%, FG
Supelco
Ammonium formate, eluent additive for LC-MS, LiChropur, ≥99.0%
Sigma-Aldrich
Methanol
Supelco
Ibuprofen, Pharmaceutical Secondary Standard; Certified Reference Material
Prednisolone for system suitability, European Pharmacopoeia (EP) Reference Standard
Prednisolone, European Pharmacopoeia (EP) Reference Standard
Caffeine for system suitability, European Pharmacopoeia (EP) Reference Standard
Ibuprofen for peak identification, European Pharmacopoeia (EP) Reference Standard
USP
Warfarin, United States Pharmacopeia (USP) Reference Standard
USP
Ibuprofen, United States Pharmacopeia (USP) Reference Standard
Ibuprofen, European Pharmacopoeia (EP) Reference Standard
USP
Sulfaquinoxaline, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ammonium formate, reagent grade, 97%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sulfadimethoxine for peak identification, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%