Skip to Content
Merck
  • GC-MS, LC-MS(n), LC-high resolution-MS(n), and NMR studies on the metabolism and toxicological detection of mesembrine and mesembrenone, the main alkaloids of the legal high "Kanna" isolated from Sceletium tortuosum.

GC-MS, LC-MS(n), LC-high resolution-MS(n), and NMR studies on the metabolism and toxicological detection of mesembrine and mesembrenone, the main alkaloids of the legal high "Kanna" isolated from Sceletium tortuosum.

Analytical and bioanalytical chemistry (2014-09-23)
Golo M J Meyer, Carina S D Wink, Josef Zapp, Hans H Maurer
ABSTRACT

Mesembrine and mesembrenone are the main alkaloids of Sceletium tortuosum, a plant species that was used for sedation and analgesia by the KhoiSan, previously known as Hottentots, a tribe in South Africa. After fermentation, the obtained preparation called "Kanna" or "Kougoed" was used by chewing, smoking, or sniffing. Today, Kanna gains popularity by drug users as legal high. For monitoring such consumption, metabolism studies are mandatory because the metabolites are mostly the analytical targets, especially in urine. Therefore, the metabolism of both alkaloids was investigated in rat urine and pooled human liver preparations after several sample work-up procedures. As both alkaloids were not commercially available, they were isolated from plant material by Soxhlet extraction, and their identity confirmed by NMR. The metabolites were identified using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to linear ion trap high resolution mass spectrometry (LC-HR-MS(n)). Both alkaloids were O- and N-demethylated, dihydrated, and/or hydroxylated at different positions. The phenolic metabolites were partly excreted as glucuronides and/or sulfates. Most of the phase I metabolites identified in rat urine could be detected also in the human liver preparations. After a common user's low dose application of mesembrine, mainly the O- and N demethyl-dihydro, hydroxy, and bis-demethyl-dihydro metabolites, and in case of mesembrenone only the N-demethyl and the N-demethyl-dihydro metabolite could be detected in rat urine using the authors' standard urine screening approaches (SUSA) by GC-MS or LC-MS(n). Thus, it should be possible to monitor a consumption of mesembrine and/or mesembrenone assuming similar pharmacokinetics in humans.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Deuterium oxide, 60 atom % D
Sigma-Aldrich
Deuterium oxide, 70 atom % D
Sigma-Aldrich
Ethanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Deuterium oxide, filtered, 99.8 atom % D
Sigma-Aldrich
Aluminum oxide, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure 200 proof, for molecular biology
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof
Sigma-Aldrich
Acetonitrile, ≥99.9% (GC)
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 1% cyclohexane, A15 CYCLO1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Aluminum oxide, activated, acidic, Brockmann I
Sigma-Aldrich
Aluminum oxide, powder, 99.99% trace metals basis
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, AR, ≥99.5%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Chloroform-d, 99.8 atom % D
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Chloroform-d, 99.8 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Ammonium formate, ≥99.995% trace metals basis