Skip to Content
Merck
  • The constitutive activation of Egr-1/C/EBPa mediates the development of type 2 diabetes mellitus by enhancing hepatic gluconeogenesis.

The constitutive activation of Egr-1/C/EBPa mediates the development of type 2 diabetes mellitus by enhancing hepatic gluconeogenesis.

The American journal of pathology (2014-12-02)
Ning Shen, Shan Jiang, Jia-Ming Lu, Xiao Yu, Shan-Shan Lai, Jing-Zi Zhang, Jin-Long Zhang, Wei-Wei Tao, Xiu-Xing Wang, Na Xu, Bin Xue, Chao-Jun Li
ABSTRACT

The sequential secretion of insulin and glucagon delicately maintains glucose homeostasis by inhibiting or enhancing hepatic gluconeogenesis during postprandial or fasting states, respectively. Increased glucagon/insulin ratio is believed to be a major cause of the hyperglycemia seen in type 2 diabetes. Herein, we reveal that the early growth response gene-1 (Egr-1) can be transiently activated by glucagon in hepatocytes, which mediates glucagon-regulated gluconeogenesis by increasing the expression of gluconeogenesis genes. Blockage of Egr-1 function in the liver of mice led to lower fasting blood glucose, better pyruvate tolerance, and higher hepatic glycogen content. The mechanism analysis demonstrated that Egr-1 can directly bind to the promoter of C/EBPa and regulate the expression of gluconeogenesis genes in the later phase of glucagon stimulation. The transient increase of Egr-1 by glucagon kept the glucose homeostasis after fasting for longer periods of time, whereas constitutive Egr-1 elevation found in the liver of db/db mice and high serum glucagon level overactivated the C/EBPa/gluconeogenesis pathway and resulted in hyperglycemia. Blockage of Egr-1 activation in prediabetic db/db mice was able to delay the progression of diabetes. Our results suggest that dysregulation of Egr-1/C/EBPa on glucagon stimulation may provide an alternative mechanistic explanation for type 2 diabetes.

MATERIALS
Product Number
Brand
Product Description

Supelco
Calcium standard for AAS, analytical standard, 1.000 g/L Ca+2 in hydrochloric acid, traceable to BAM
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Sodium bicarbonate, ACS reagent, ≥99.7%
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium bicarbonate-12C, 99.9 atom % 12C
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%