Skip to Content
Merck
  • An in vivo murine model for screening cranial bone regenerative materials: testing of a novel synthetic collagen gel.

An in vivo murine model for screening cranial bone regenerative materials: testing of a novel synthetic collagen gel.

Journal of materials science. Materials in medicine (2014-02-28)
Hisako Hikiji, Ken Tomizuka, Tetsushi Taguchi, Hiroyuki Koyama, Daichi Chikazu, Yoshiyuki Mori, Tsuyoshi Takato
ABSTRACT

Rapid and efficient animal models are needed for evaluating the effectiveness of many new candidate bone regenerative materials. We developed an in vivo model screening for calvarial bone regeneration in lipopolysaccharide (LPS)-treated mice, in which materials were overlaid on the periosteum of the calvaria in a 20 min surgery and results were detectable in 1 week. Intraperitoneal LPS injection reduced spontaneous bone formation, and local application of basic fibroblast growth factor (bFGF) increased the bone-forming activities of osteoblasts. A novel synthetic collagen gel, alkali-treated collagen (AlCol) cross-linked with trisuccinimidyl citrate (TSC), acted as a reservoir for basic substances such as bFGF. The AlCol-TSC gel in conjunction with bFGF activated osteoblast activity without the delay in osteoid maturation caused by bFGF administration alone. The AlCol-TSC gel may slow the release of bFGF to improve the imbalance between osteoid formation and bone mineralization. These findings suggest that our model is suitable for screening bone regenerative materials and that the AlCOl-TSC gel functions as a candidate reservoir for the slow release of bFGF.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Methyl methacrylate, 99%, stabilized
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Methyl methacrylate, contains ≤30 ppm MEHQ as inhibitor, 99%
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Supelco
Tetrahydrofuran, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Tetrahydrofuran, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Supelco
Citric acid, Anhydrous, Pharmaceutical Secondary Standard; Certified Reference Material