Skip to Content
Merck
  • Silica-based nanofibers for electrospun ultra-thin layer chromatography.

Silica-based nanofibers for electrospun ultra-thin layer chromatography.

Journal of chromatography. A (2014-09-15)
Toni E Newsome, Susan V Olesik
ABSTRACT

Nanofibrous silica-based stationary phases for electrospun ultra-thin layer chromatography (E-UTLC) are described. Nanofibers were produced by electrospinning a solution of silica nanoparticles dispersed in polyvinylpyrrolidone solutions to create composite silica/polymer nanofibers. Stationary phases were created from as-spun nanofibers, or the nanofibers were heated either to crosslink the polyvinylpyrrolidone or to calcine and selectively remove the polymer. As-spun, crosslinked, and calcined nanofibers with similar mat thicknesses (23-25 μm) were evaluated as stationary phases for E-UTLC separations of laser dyes and amino acids and compared to commercial silica TLC plates. As-spun nanofiber plates offered fast mobile phase velocities, but like other polymer-based nanofibers, separations were only compatible with techniques using nonsolvents of the polymer. Crosslinked nanofibers were not as limited in terms of chemical stability, but separations produced tailed spot shapes. No limitations in terms of mobile phases, analyte solvents, and visualization techniques were observed for calcined nanofibers. Highly efficient separations of amino acids were performed in 15 mm on calcined nanofiber plates, with observed plate heights as low as 8.6 μm, and plate numbers as large as 1400. Additional alignment of the nanofibers provided shorter analysis times but also larger spot widths. The extension of stationary phases to silica-based nanofibers vastly expands the range of mobile phases, analyte solvents, and visualization techniques which can be used for E-UTLC separations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Supelco
Acetone, analytical standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Sulfuric acid, 99.999%
Sigma-Aldrich
1-Butanol, anhydrous, 99.8%
Sigma-Aldrich
Ninhydrin, ACS reagent
Sigma-Aldrich
1-Propanol, ≥99%, FG
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Phosphoric acid solution, 85 wt. % in H2O, FCC, FG
Sigma-Aldrich
Heptane, anhydrous, 99%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Hydrocortisone, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrocortisone, ≥98% (HPLC)
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
L-Threonine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
Hydrocortisone, meets USP testing specifications
Supelco
Hydrocortisone, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
1-Propanol, analytical standard
Supelco
1-Butanol, analytical standard
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Nitric-14N acid solution, ~10 N in H2O, 99.99 atom % 14N
Sigma-Aldrich
Methanol, NMR reference standard
USP
Hydrocortisone, United States Pharmacopeia (USP) Reference Standard
Supelco
Acetone, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Acetone, United States Pharmacopeia (USP) Reference Standard
Supelco
L-Threonine, Pharmaceutical Secondary Standard; Certified Reference Material