Skip to Content
Merck
  • Physicochemical characterization of asulacrine towards the development of an anticancer liposomal formulation via active drug loading: stability, solubility, lipophilicity and ionization.

Physicochemical characterization of asulacrine towards the development of an anticancer liposomal formulation via active drug loading: stability, solubility, lipophilicity and ionization.

International journal of pharmaceutics (2014-08-01)
Esther See, Wenli Zhang, Jianping Liu, Darren Svirskis, Bruce C Baguley, John P Shaw, Guangji Wang, Zimei Wu
ABSTRACT

To facilitate the development of a liposomal formulation for cancer therapy, the physicochemical properties of asulacrine (ASL), an anticancer drug candidate, were characterized. Nano-liposomes were prepared by thin-film hydration in conjugation with active drug loading using ammonium sulphate and post-insertion with Poloxamer 188. A stability-indicating HPLC assay with diode array detection was developed for the determination of ASL concentrations. The U-shaped pH-solubility profile in aqueous solutions, with a lowest solubility at pH 7.4 (0.843 μg/mL), indicated that ASL is an ampholyte, and dilution or neutralization of acidic drug solutions used in clinical trials with physiological fluids may cause drug precipitation. The basic pKa value measured by absorbance spectroscopy was 6.72. The logD value at pH 3.8 was 1.15 which increased to 3.24 as pH increased to 7.4. ASL was found to be the most stable in acidic conditions and degraded most rapidly in alkaline conditions. An extra-liposomal pH of 5.6 during drug loading was found to be optimal to achieve the highest drug loading (DL) of 4.76% and entrapment efficiency (EE) of 99.9%. At this pH, >90% of ASL was ionized conferring high drug solubility (1mg/mL) and acted as a reservoir of unionized ASL to be transported into liposomal cores. As a suspension the optimized liposomes showed great physicochemical stability for five months at 4°C. In summary, the obtained physicochemical parameters provided insightful information useful to maximise DL into the liposomes, and explain a tendency of drug precipitation of pH-solubilized formulations following intravenous infusion.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Cholesterol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, AR, ≥99.5%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C