Skip to Content
Merck
  • The role of ANK interactions with MYBBP1a and SPHK1 in catabolic events of articular chondrocytes.

The role of ANK interactions with MYBBP1a and SPHK1 in catabolic events of articular chondrocytes.

Osteoarthritis and cartilage (2014-04-22)
T Minashima, K A Campbell, S R Hadley, Y Zhang, T Kirsch
ABSTRACT

To determine the role of progressive ankylosis protein (ANK)/Myb-binding protein 1a (MYBBP1a) and sphingosine kinase 1 (SPHK1) interactions in catabolic events of articular chondrocytes. ANK/MYBBP1a and SPHK1 interactions were identified using yeast two-hybrid screening and co-immunoprecipitation. To determine the role of these interactions in catabolic events of articular chondrocytes, ank/ank and wild type (WT) mouse chondrocytes transfected with full-length or mutant ank expression vectors (EVs) or femoral heads were treated with interleukin-1beta (IL-1β) in the absence or presence of SPHK inhibitor. Catabolic marker mRNA levels were analyzed by real time PCR; proteoglycan loss using safranin O staining and MMP-13 immunostaining were determined in femoral head explants; NF-κB activity was determined by transfecting chondrocytes with an NF-κB-specific luciferase reporter and analyzing nuclear translocation of p65 by immunoblotting; MYBBP1a nuclear or cytoplasmic amounts were determined by immunohistochemistry and immunoblotting. The ANK N-terminal region interacted with SPHK1, whereas a cytoplasmic C-terminal loop interacted with MYBBP1a. Lack of ANK/MYBBP1a and SPHK1 interactions in ank/ank chondrocytes resulted in increased MYBBP1a nuclear amounts and decreased SPHK1 activity, and consequently decreased NF-κB activity, catabolic marker mRNA levels, proteoglycan loss, and MMP-13 immunostaining in IL-1β-treated articular chondrocytes or femoral heads. Transfection with full-length ank EV reduced nuclear MYBBP1a amounts and fully restored SPHK and NF-κB activities in IL-1β-treated ank/ank chondrocytes, whereas transfection with P5L or F376del mutant ank reduced nuclear MYBBP1a or increased SPHK activity, respectively, and consequently either transfection only partially restored NF-κB activity. ANK/MYBBP1a and SPHK1 interactions stimulate catabolic events in IL-1β-mediated cartilage degradation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Supelco
Methanol, analytical standard
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O