Skip to Content
Merck
  • A sensitive and accurate quantitative method to determine N-arachidonoyldopamine and N-oleoyldopamine in the mouse striatum using column-switching LC-MS-MS: use of a surrogate matrix to quantify endogenous compounds.

A sensitive and accurate quantitative method to determine N-arachidonoyldopamine and N-oleoyldopamine in the mouse striatum using column-switching LC-MS-MS: use of a surrogate matrix to quantify endogenous compounds.

Analytical and bioanalytical chemistry (2014-05-13)
Dajeong Ji, Choon-Gon Jang, Sooyeun Lee
ABSTRACT

The transient receptor potential vanilloid 1 (TRPV1) channel, a nonselective Ca(2+) and Na(+) channel, is a molecular transducer of nociceptive stimuli. N-Arachidonoyl dopamine (NADA) and N-oleoyldopamine (OLDA), two unsaturated N-acyldopamines, are major activating endogenous TRPV1 ligands and their presence in mammalian brain tissue has been reported. However, the biological significance of NADA and OLDA remains unknown. To investigate their biological function in the nervous system, a sensitive and accurate quantitative method for determining endogenous NADA and OLDA in the brain is necessary. Thus, a column-switching liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed to quantify NADA and OLDA in mouse striatum. Mouse cerebellum tissue in which neither NADA nor OLDA were detected was used as a surrogate matrix to prepare calibrators. NADA and OLDA were extracted from mouse brain tissue by solid-phase extraction and then filtered and analyzed by LC-MS-MS with electrospray ionization in the positive ion mode. The selectivity results and comparison of calibration curves prepared with mouse cerebellum and striatum established that the former was acceptable as the surrogate matrix of the latter for analyzing NADA and OLDA. The validation results of the matrix effect, linearity, precision, accuracy, and stability were satisfactory. The limits of detection and limits of quantification were 0.125 pg mg(-1) for both analytes. This method was sensitive and accurate enough to determine endogenous concentrations of these compounds in mouse striatum and will be very useful for further study of the biological functions of NADA and OLDA and other related factors in vivo.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, NMR reference standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Trifluoroacetic acid, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Trifluoroacetic acid, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Trifluoroacetic acid, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, AR, ≥99.5%