Skip to Content
Merck
  • Uptake of neutrophil-derived Ym1 protein distinguishes wound macrophages in the absence of interleukin-4 signaling in murine wound healing.

Uptake of neutrophil-derived Ym1 protein distinguishes wound macrophages in the absence of interleukin-4 signaling in murine wound healing.

The American journal of pathology (2014-10-14)
Itamar Goren, Josef Pfeilschifter, Stefan Frank
ABSTRACT

The determination of regenerative wound-healing macrophages as alternatively activated macrophages is currently questioned by the absence of IL-4 in wound tissue. Yet, murine wound tissue expressed high levels of Ym1 (chitinase 3-like 3), an established marker of the IL-4-induced alternatively activated macrophage phenotype. Ym1 was expressed in wound neutrophils but not in macrophages. Initially, Ym1-free wound-healing macrophages, invading from the wound margins, became gradually positive for the protein in the absence of IL-4 signaling and Stat6 activation, as they entered the neutrophil-populated wound regions. IL-4 failed to induce Ym1 protein in ex vivo-cultured wound tissue explants containing wound-healing macrophages. Recombinant Ym1 protein was selectively taken up by macrophages but not by keratinocytes and endothelial cells. Cultured macrophages lost the ability to take up the recombinant protein when four highly conserved residues and the 70-amino acid small α+β domain essential for Ym1 function were removed. The data suggest that the IL-4/Stat6-independent presence of Ym1 protein in wound-healing macrophages is of exogenous origin, with Ym1 taken up from wound neutrophils as the cellular source. The data suggest that in situ determination of wound-healing macrophages, often defined by Ym1, might not essentially describe an IL-4-dependent macrophage phenotype. Consequently, wound-healing macrophages should not be classified by the established categories of the well-accepted but simplified paradigm of M1/M2 macrophage activation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
Fluorescein isothiocyanate isomer I, suitable for protein labeling, ≥90% (HPLC), powder
Sigma-Aldrich
Sodium orthovanadate, ≥90% (titration)
Sigma-Aldrich
Anti-c-Myc antibody produced in rabbit, ~0.5 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Supelco
Fluoride ion solution for ISE, 0.1 M F-, analytical standard (for ion-selective electrodes)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Sodium fluoride, BioXtra, ≥99%
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, ≥90% (HPLC)
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
DAPI, for nucleic acid staining
Supelco
Glycerin, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Glycerol, analytical standard
Sigma-Aldrich
Glycerol, ReagentPlus®, ≥99.0% (GC)
USP
Glycerin, United States Pharmacopeia (USP) Reference Standard