Skip to Content
Merck
  • Identification of an allosteric small-molecule inhibitor selective for the inducible form of heat shock protein 70.

Identification of an allosteric small-molecule inhibitor selective for the inducible form of heat shock protein 70.

Chemistry & biology (2014-12-17)
Matthew K Howe, Khaldon Bodoor, David A Carlson, Philip F Hughes, Yazan Alwarawrah, David R Loiselle, Alex M Jaeger, David B Darr, Jamie L Jordan, Lucas M Hunter, Eileen T Molzberger, Theodore A Gobillot, Dennis J Thiele, Jeffrey L Brodsky, Neil L Spector, Timothy A J Haystead
ABSTRACT

Inducible Hsp70 (Hsp70i) is overexpressed in a wide spectrum of human tumors, and its expression correlates with metastasis, poor outcomes, and resistance to chemotherapy in patients. Identification of small-molecule inhibitors selective for Hsp70i could provide new therapeutic tools for cancer treatment. In this work, we used fluorescence-linked enzyme chemoproteomic strategy (FLECS) to identify HS-72, an allosteric inhibitor selective for Hsp70i. HS-72 displays the hallmarks of Hsp70 inhibition in cells, promoting substrate protein degradation and growth inhibition. Importantly, HS-72 is selective for Hsp70i over the closely related constitutively active Hsc70. Studies with purified protein show HS-72 acts as an allosteric inhibitor, reducing ATP affinity. In vivo HS-72 is well-tolerated, showing bioavailability and efficacy, inhibiting tumor growth and promoting survival in a HER2+ model of breast cancer. The HS-72 scaffold is amenable to resynthesis and iteration, suggesting an ideal starting point for a new generation of anticancer therapeutics targeting Hsp70i.