Skip to Content
Merck

Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase.

Nature (2014-12-05)
Julia Steuber, Georg Vohl, Marco S Casutt, Thomas Vorburger, Kay Diederichs, Günter Fritz
ABSTRACT

NADH oxidation in the respiratory chain is coupled to ion translocation across the membrane to build up an electrochemical gradient. The sodium-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a membrane protein complex widespread among pathogenic bacteria, consists of six subunits, NqrA, B, C, D, E and F. To our knowledge, no structural information on the Na(+)-NQR complex has been available until now. Here we present the crystal structure of the Na(+)-NQR complex at 3.5 Å resolution. The arrangement of cofactors both at the cytoplasmic and the periplasmic side of the complex, together with a hitherto unknown iron centre in the midst of the membrane-embedded part, reveals an electron transfer pathway from the NADH-oxidizing cytoplasmic NqrF subunit across the membrane to the periplasmic NqrC, and back to the quinone reduction site on NqrA located in the cytoplasm. A sodium channel was localized in subunit NqrB, which represents the largest membrane subunit of the Na(+)-NQR and is structurally related to urea and ammonia transporters. On the basis of the structure we propose a mechanism of redox-driven Na(+) translocation where the change in redox state of the flavin mononucleotide cofactor in NqrB triggers the transport of Na(+) through the observed channel.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Iron, granular, 10-40 mesh, >99.99% trace metals basis
Sigma-Aldrich
Iron, ≥99%, reduced, powder (fine)
Sigma-Aldrich
Sodium, cubes, contains mineral oil, 99.9% trace metals basis