Skip to Content
Merck
  • Cholesteryl ester diffusion, location and self-association constraints determine CETP activity with discoidal HDL: excimer probe study.

Cholesteryl ester diffusion, location and self-association constraints determine CETP activity with discoidal HDL: excimer probe study.

Archives of biochemistry and biophysics (2014-12-03)
Alexander D Dergunov, Elena V Shabrova, Gennady E Dobretsov
ABSTRACT

The transfer of cholesteryl ester by recombinant cholesteryl ester transfer protein (CETP) between reconstituted discoidal high-density lipoprotein (rHDL) was studied. Particles contained apolipoprotein A-I, unsaturated POPC or saturated DPPC and cholesteryl ester as cholesteryl 1-pyrenedecanoate (CPD) or cholesteryl laurate (CL) in donor and acceptor rHDL, respectively. Probe dynamics fulfilled the quenching sphere-of-action model. The cholesteryl ester exchange between donor and acceptor particles was characterized by a heterogeneous kinetics; the fast exchanging CPD pool was much higher in a case of POPC compared to DPPC complexes. Probe fraction accessible to CETP increased with temperature, suggesting a more homogeneous probe distribution. Noncompetitive inhibition of probe transfer by acceptor particles was observed. The values of Vmax (0.063μMmin(-1)) and catalytic rate constant kcat (0.42s(-1)) together with a similarity of Km (0.9μM CPD) and KI (2.8μM CL) values for POPC-containing rHDL suggest the efficient cholesteryl ester transfer between nascent HDL with unsaturated phosphatidylcholine in vivo. The phospholipid matrix in discoidal HDL may underlie CETP activity through the self-association, diffusivity and location of cholesteryl ester in the bilayer, the accessibility of cholesteryl ester to cholesterol-binding site in apoA-I structure and the binding of cholesteryl ester, positionable by apoA-I, to CETP.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Supelco
Cholesterol, Pharmaceutical Secondary Standard; Certified Reference Material