Skip to Content
Merck
  • Solar photocatalytic ozonation of a mixture of pharmaceutical compounds in water.

Solar photocatalytic ozonation of a mixture of pharmaceutical compounds in water.

Chemosphere (2014-07-30)
Gracia Márquez, Eva M Rodríguez, Fernando J Beltrán, Pedro M Álvarez
ABSTRACT

Aqueous solutions of mixtures of four pharmaceutical compounds (atenolol, hydrochlorothiazide, ofloxacin and trimethoprim) both in Milli-Q ultrapure water and in a secondary effluent from a municipal wastewater treatment plant have been treated at pH 7 by different oxidation methods, such as conventional ozonation, photolytic ozonation, TiO2 catalytic ozonation, TiO2 photocatalytic oxidation and TiO2 photocatalytic ozonation. Experiments were carried out using a solar compound parabolic concentrator. The performance results have been compared in terms of removal of emerging contaminants (ECs), generation rate of phenolic intermediates, organic matter mineralization, ecotoxicity removal and enhancement of biodegradability. Also, the consumption of ozone to achieve certain treatment goals (95% removal of ECs and 40% mineralization) is discussed. Results reveal that solar photocatalytic ozonation is a promising oxidation method as it led to the best results in terms of EC mineralization (∼85%), toxicity removal (∼90%) and efficient use of ozone (∼2mgO3mgEC(-1) to achieve complete EC removal and ∼18mgO3mgTOC(-1) to achieve 40% EC mineralization, respectively).

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Trimethoprim, ≥98.5%
Sigma-Aldrich
Atenolol, ≥98% (TLC), powder
Supelco
Trimethoprim, VETRANAL®, analytical standard
Supelco
Trimethoprim, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Titanium(IV) oxide, nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
Supelco
Hydrochlorothiazide, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, 99.8% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis
USP
Hydrochlorothiazide, United States Pharmacopeia (USP) Reference Standard