Skip to Content
Merck
  • First-line allogeneic hematopoietic stem cell transplantation of HLA-matched sibling donors compared with first-line ciclosporin and/or antithymocyte or antilymphocyte globulin for acquired severe aplastic anemia.

First-line allogeneic hematopoietic stem cell transplantation of HLA-matched sibling donors compared with first-line ciclosporin and/or antithymocyte or antilymphocyte globulin for acquired severe aplastic anemia.

The Cochrane database of systematic reviews (2013-07-25)
Frank Peinemann, Carmen Bartel, Ulrich Grouven
ABSTRACT

Acquired severe aplastic anemia is a rare and potentially fatal disease, which is characterized by hypocellular bone marrow and pancytopenia. The major signs and symptoms are severe infections, bleeding, and exhaustion. First-line allogeneic hematopoietic stem cell transplantation (HSCT) of a human leukocyte antigen (HLA)-matched sibling donor (MSD) is a treatment for newly diagnosed patients with severe aplastic anemia. First-line treatment with ciclosporin and/or antithymocyte or antilymphocyte globulin (as first-line immunosuppressive therapy) is an alternative to MSD-HSCT and is indicated for patients where no MSD is found. To evaluate the effectiveness and adverse events of first-line allogeneic hematopoietic stem cell transplantation of HLA-matched sibling donors compared to first-line immunosuppressive therapy including ciclosporin and/or antithymocyte or antilymphocyte globulin in patients with acquired severe aplastic anemia. We searched the electronic databases MEDLINE (Ovid), EMBASE (Ovid), and The Cochrane Library CENTRAL (Wiley) for published articles from 1946 to 22 April 2013. Further searches included trial registries, reference lists of recent reviews, and author contacts. The following prospective study designs were eligible for inclusion: randomized controlled trials (RCTs) and non-randomized controlled trials if the allocation of patients to treatment groups was consistent with 'Mendelian randomization'. We included participants with newly diagnosed severe aplastic anemia who received MSD-HSCT or immunosuppressive therapy without prior HSCT or immunosuppressive therapy, and with a minimum of five participants per treatment group. We did not apply limits on publication year or languages. Two review authors abstracted the data on study and patient characteristics and assessed the risk of bias independently. We resolved differences by discussion or by appeal to a third review author. The primary outcome was overall mortality. Secondary outcomes were treatment-related mortality, graft failure, no response to first-line immunosuppressive therapy, graft-versus-host-disease (GVHD), relapse after initial successful treatment, secondary clonal and malignant disease, health-related quality of life, and performance score. We identified three trials that met the inclusion criteria. None of these trials was a RCT. 302 participants are included in this review. The three included studies were prospectively conducted and had features consistent with the principle of 'Mendelian randomization' as defined in the present review. All studies had a high risk of bias due to the study design. All studies were conducted more than 10 years ago and may not be applicable to the standard of care of today. Primary and secondary outcome data showed no statistically significant difference between treatment groups. We present results for first-line allogeneic hematopoietic stem cell transplantation of an HLA-matched sibling donor, which we denote as the MSD-HSCT group, versus first-line treatment with ciclosporin and/or antithymocyte or antilymphocyte globulin, which we denote as the immunosuppressive therapy group in the following section.The pooled hazard ratio for overall mortality for the MSD-HSCT group versus the immunosuppressive therapy group was 0.95 (95% confidence interval 0.43 to 2.12, P = 0.90, low quality evidence). Therefore, overall mortality was not statistically significantly different between the groups. Treatment-related mortality ranged from 20% to 42% for the MSD-HSCT group and was not reported for the immunosuppressive therapy group (very low quality evidence). The authors reported graft failure from 3% to 16% for the MSD-HSCT group and GVHD from 26% to 51% (both endpoints not applicable for the immunosuppressive therapy group, very low quality evidence). The authors did not report any data on response and relapse for the MSD-HSCT group. For the immunosuppressive therapy group, the studies reported no response from 15% (not time point stated) to 64% (three months) and relapse in one of eight responders after immunosuppressive therapy at 5.5 years (very low quality evidence). The authors reported secondary clonal disease or malignancies for the MSD-HSCT group versus the immunosuppressive therapy group in 1 of 34 versus 0 of 22 patients in one study and in 0 of 28 versus 4 of 86 patients in the other study (low quality evidence). None of the included studies addressed health-related quality of life. The percentage of the evaluated patients with a Karnofsky performance status score in the range of 71% to 100% was 92% in the MSD-HSCT group and 46% in the immunosuppressive therapy group. There are insufficient and biased data that do not allow any conclusions to be made about the comparative effectiveness of first-line allogeneic hematopoietic stem cell transplantation of an HLA-matched sibling donor and first-line treatment with ciclosporin and/or antithymocyte or antilymphocyte globulin (as first-line immunosuppressive therapy). We are unable to make firm recommendations regarding the choice of intervention for treatment of acquired severe aplastic anemia.