- Hydrothermal synthesis of tetragonal BaTiO3 nanotube arrays with high dielectric performance.
Hydrothermal synthesis of tetragonal BaTiO3 nanotube arrays with high dielectric performance.
Tetragonal Barium titanate (BaTiO3) nanotube arrays have been prepared using the template-assisted hydrothermal method combined with an annealing process. The in-situ chemical conversion of TiO2 nanotube array templates ensured that BaTiO3 maintained the morphology of the nanotube architectures. Moreover, X-ray diffraction and Raman spectrum characterization were used to confirm that the BaTiO3 nanotube arrays had a tetragonal phase after the use of a simple annealing technique. Typical hysteresis loops showed their ferroelectricity, with the remanent polarization and coercive fields being 2.57 microC/cm2 and 2.52 kV/cm, respectively. The relative dielectric constant of the tetragonal BaTiO3 nanotube arrays reached up to 1000 and the dielectric loss was as low as 0.02 at 1 kHz at room temperature.