Skip to Content
Merck
  • Design and fabrication of carbon quantum dots/TiO2 photonic crystal complex with enhanced photocatalytic activity.

Design and fabrication of carbon quantum dots/TiO2 photonic crystal complex with enhanced photocatalytic activity.

Journal of nanoscience and nanotechnology (2014-04-18)
Zhong Huang, Liang Fang, Wen Dong, Yang Liu, Zhenhui Kang
ABSTRACT

TiO2 photonic crystal photocatalyst with inverse opal structure were first prepared from self-assembled polystyrene spheres template, and then carbon quantum dots (CQDs) was coupled with TiO2 inverse opal through a facile electrodeposition method. The obtained CQDs/TiO2 complex photocatalysts exhibit enhanced photocatalytic activity compared to pure TiO2 inverse opal, especially under the irradiation of visible light. Our results provide a promising methodology for designing high performance photocatalysts based on photonic crystal and CQDs, which is benefit for catalytic and new energy applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, 99.8% trace metals basis
Sigma-Aldrich
Activated charcoal, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Carbon, nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
Activated charcoal, acid-washed with hydrochloric acid
Sigma-Aldrich
Titanium(IV) oxide, anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis