Skip to Content
Merck
  • Imidazole, imidazolate, and hydroxide complexes of (protoporphyrin IX)iron(III) and its dimethyl ester as model systems for ferric hemoproteins: electron paramagnetic resonance and electronic spectral study.

Imidazole, imidazolate, and hydroxide complexes of (protoporphyrin IX)iron(III) and its dimethyl ester as model systems for ferric hemoproteins: electron paramagnetic resonance and electronic spectral study.

Archives of biochemistry and biophysics (1984-05-01)
T Yoshimura, T Ozaki
ABSTRACT

The EPR and electronic spectral changes upon titration of systems consisting of (protoporphyrin IX)iron(III) chloride (Fe(PPIX)Cl) or its dimethyl ester (Fe-(PPIXDME)Cl) and imidazole derivatives with tetrabutylammonium hydroxide solution have been measured at 77 and 298 degrees K in various solvents. The EPR and electronic spectra of the melt of Fe(PPIXDME)Cl in imidazole derivatives have been also measured. The imidazole derivatives studied here were imidazole and 4-methyl-, 4-phenyl-, 2-methyl-, 2,4-dimethyl-, 1-methyl-, and 1-acetylimidazole. The spectral changes upon addition of hydroxide were markedly different between the systems containing NH imidazoles (BH), with a dissociable proton, and those containing NR imidazoles (BR), without it. In the former systems, five spectral species were successively formed at 77 degrees K and were assigned to following complexes: [Fe(P)(BH)2]+, Fe(P)(BH)(B), [Fe(P)(B)2]-, Fe(P)(BH)(OH), and [Fe(P)(B)(OH)]-, where P is PPIX or PPIXDME. In the latter systems, initial complex, [Fe(P)(BR)2]+, was found to be changed to final complex, Fe(P)(BR)(OH), through an intermediate at 77 degrees K. At 298 degrees K, both systems were found to react with hydroxide to finally form Fe(P)(OH). The crystal field parameters were evaluated using the EPR g values in low-spin complexes studied here and in hemoproteins. The five regions corresponding to five low-spin complexes could be distinguished in crystal field diagrams.