Skip to Content
Merck
  • In vivo treatment of mutant FLT3-transformed murine leukemia with a tyrosine kinase inhibitor.

In vivo treatment of mutant FLT3-transformed murine leukemia with a tyrosine kinase inhibitor.

Leukemia (2000-03-17)
M Zhao, H Kiyoi, Y Yamamoto, M Ito, M Towatari, S Omura, T Kitamura, R Ueda, H Saito, T Naoe
ABSTRACT

Somatic mutation of the FLT3 gene, in which the juxtamembrane domain has an internal tandem duplication, is found in 20% of human acute myeloid leukemias and causes constitutive tyrosine phosphorylation of the products. In this study, we observed that the transfection of mutant FLT3 gene into an IL3-dependent murine cell line, 32D, abrogated the IL3-dependency. Subcutaneous injection of the transformed 32D cells caused leukemia in addition to subcutaneous tumors in C3H/HeJ mice. To develop a FLT3-targeted therapy, we examined tyrosine kinase inhibitors for in vitro growth suppression of the transformed 32D cells. A tyrosine kinase inhibitor, herbimycin A, remarkably inhibited the growth of the transformed 32D cells at 0.1 microM, at which concentration it was ineffective in parental 32D cells. Herbimycin A suppressed the constitutive tyrosine phosphorylation of the mutant FLT3 but not the phosphorylation of the ligand-stimulated wild-type FLT3. In mice transplanted with the transformed 32D cells, the administration of herbimycin A prolonged the latency of disease or completely prevented leukemia, depending on the number of cells inoculated and schedule of drug administration. These results suggest that mutant FLT3 is a promising target for tyrosine kinase inhibitors in the treatment of leukemia.