Skip to Content
Merck
  • Thermal denaturation of mononucleosomes in the presence of spermine, spermidine, N1-acetylspermidine, N8-acetylspermidine or putrescine: implications for chromosome structure.

Thermal denaturation of mononucleosomes in the presence of spermine, spermidine, N1-acetylspermidine, N8-acetylspermidine or putrescine: implications for chromosome structure.

Molecular biology reports (1987-01-01)
J W Blankenship, J E Morgan, H R Matthews
ABSTRACT

Putrescine (a diamine) raises the thermal denaturation temperature of mononucleosomes but produces only minor changes in the overall shape of the thermal denaturation curve. This is similar to the effect of sodium ions and is consistent with nonspecific binding to the DNA of the nucleosome. At very low levels of spermidine or spermine the same simple rise in thermal denaturation temperature is seen but at higher levels (above 1 microM for total spermidine concentration) the thermal denaturation curve becomes substantially sharper and the premelt region of the curve diminishes in area. The acetylspermidines display intermediate effects. The change in shape of the thermal denaturation curve was resolved into components (R1 and R2) due to mononucleosomes in their original conformation plus a component (T) induced by the presence of spermidine or spermine. The proportion of component T was substantially reduced with acetylspermidine, compared to equivalent concentrations of spermidine. Hence, we suggest that spermidine acetylation in vivo has the potential to partially destabilise the nucleosome structure, possibly in coordination with histone acetylation.