Skip to Content
Merck
  • Intramembranous organization of lobster excitatory neuromuscular synapses.

Intramembranous organization of lobster excitatory neuromuscular synapses.

Journal of neurocytology (1986-04-01)
J Pearce, C K Govind, R R Shivers
ABSTRACT

The fine structure of identified neuromuscular synapses of the single excitatory axon to the distal accessory flexor muscle in lobster limbs was examined with freeze-fracture and serial thin-section electron microscopy. The latter technique reveals presynaptic dense bars with synaptic vesicles aligned on either side of these bars and often fused to the membrane, suggesting exocytosis and confirming our previous contention that these bars are active zones of transmitter release. The intramembranous organization of these active zones, as revealed in freeze-etched tissue, is a ridge-like elevation of the P-face of the axolemma with a matching trough on the complementary E-face. The ridge on the P-face has rows of large scattered intramembranous particles along the apex and is often bordered by a series of small, circular depressions which are presumed to represent exocytotic vesicles attached to the presynaptic membrane. Complementing these depressions are a few volcano-like protuberances seen occasionally on the E-face membrane. Because such evidence for transmitter release occurred in both stimulated and non-stimulated preparations, it demonstrates that chemical fixatives employing aldehydes induce transmitter release. The postsynaptic receptor sites of these excitatory synapses are characterized by oval-shaped patches of densely packed particles on the E-face, arranged in a random pattern on the sarcolemma. The complementary P-face view exhibits a regular square array of particle imprints or pits.